• Journal of Semiconductors
  • Vol. 44, Issue 6, 061801 (2023)
Botong Li1,2, Xiaodong Zhang1,2, Li Zhang1, Yongjian Ma1,2..., Wenbo Tang1,2, Tiwei Chen1,2, Yu Hu1,2, Xin Zhou2, Chunxu Bian2, Chunhong Zeng2, Tao Ju2, Zhongming Zeng1,2 and Baoshun Zhang1,2,*|Show fewer author(s)
Author Affiliations
  • 1School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
  • 2Nano Fabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
  • show less
    DOI: 10.1088/1674-4926/44/6/061801 Cite this Article
    Botong Li, Xiaodong Zhang, Li Zhang, Yongjian Ma, Wenbo Tang, Tiwei Chen, Yu Hu, Xin Zhou, Chunxu Bian, Chunhong Zeng, Tao Ju, Zhongming Zeng, Baoshun Zhang. A comprehensive review of recent progress on enhancement-mode β-Ga2O3 FETs: Growth, devices and properties[J]. Journal of Semiconductors, 2023, 44(6): 061801 Copy Citation Text show less
    References

    [2] M H Wong, M Higashiwaki. Vertical β-Ga2O3 power transistors: A review. IEEE Trans Electron Devices, 67, 3925(2020).

    [3] X She, A Q Huang, Ó Lucía et al. Review of silicon carbide power devices and their applications. IEEE Trans Ind Electron, 64, 8193(2017).

    [4] R Z Sun, J X Lai, W J Chen et al. GaN power integration for high frequency and high efficiency power applications: A review. IEEE Access, 8, 15529(2020).

    [5] C L Wang, J C Zhang, S R Xu et al. Progress in state-of-the-art technologies of Ga2O3 devices. J Phys D, 54, 243001(2021).

    [6] M Higashiwaki, K Sasaki, A Kuramata et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 100, 013504(2012).

    [7] G Wagner, M Baldini, D Gogova et al. Homoepitaxial growth of β-Ga2O3 layers by metal-organic vapor phase epitaxy. Phys Status Solidi A, 211, 27(2014).

    [8] M Baldini, M Albrecht, A Fiedler et al. Si- and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates. ECS J Solid State Sci Technol, 6, Q3040(2016).

    [9] Y W Zhang, F Alema, A Mauze et al. MOCVD grown epitaxial β-Ga2O3 thin film with an electron mobility of 176 cm2/V s at room temperature. APL Mater, 7, 022506(2019).

    [10] T Oshima, N Arai, N Suzuki et al. Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy. Thin Solid Films, 516, 5768(2008).

    [11] K Sasaki, M Higashiwaki, A Kuramata et al. Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy. J Cryst Growth, 392, 30(2014).

    [12] K Nomura, K Goto, R Togashi et al. Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy. J Cryst Growth, 405, 19(2014).

    [13] Y Oshima, E G Vίllora, K Shimamura. Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0001) substrates by halide vapor phase epitaxy. J Cryst Growth, 410, 53(2015).

    [14] J H Leach, K Udwary, J Rumsey et al. Halide vapor phase epitaxial growth of β-Ga2O3 and α-Ga2O3 films. APL Mater, 7, 022504(2019).

    [15] N Ueda, H Hosono, R Waseda et al. Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals. Appl Phys Lett, 70, 3561(1997).

    [16] K Sasaki, A Kuramata, T Masui et al. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl Phys Express, 5, 035502(2012).

    [17] S H Han, A Mauze, E Ahmadi et al. n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy. Semicond Sci Technol, 33, 045001(2018).

    [18] E G Víllora, K Shimamura, Y Yoshikawa et al. Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping. Appl Phys Lett, 92, 202120(2008).

    [19] D Gogova, G Wagner, M Baldini et al. Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE. J Cryst Growth, 401, 665(2014).

    [20] E Ahmadi, O S Koksaldi, S W Kaun et al. Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. Appl Phys Express, 10, 041102(2017).

    [21] M Saleh, A Bhattacharyya, J B Varley et al. Electrical and optical properties of Zr doped β-Ga2O3 single crystals. Appl Phys Express, 12, 085502(2019).

    [22] M Saleh, J B Varley, J Jesenovec et al. Degenerate doping in β-Ga2O3 single crystals through Hf-doping. Semicond Sci Technol, 35, 04LT01(2020).

    [23] M H Wong, K Sasaki, A Kuramata et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett, 37, 212(2016).

    [24] Y J Lv, X Y Zhou, S B Long et al. Source-field-plated β-Ga2O3 MOSFET with record power figure of merit of 50.4 MW/cm2. IEEE Electron Device Lett, 40, 83(2019).

    [25] S Sharma, K Zeng, S Saha et al. Field-plated lateral Ga2O3 MOSFETs with polymer passivation and 8.03 kV breakdown voltage. IEEE Electron Device Lett, 41, 836(2020).

    [26] M Kanechika, M Sugimoto, N Soejima et al. A vertical insulated gate AlGaN/GaN heterojunction field-effect transistor. Jpn J Appl Phys, 46, L503(2007).

    [27] J N Shenoy, J A Cooper, M R Melloch. High-voltage double-implanted power MOSFET’s in 6H-SiC. IEEE Electron Device Lett, 18, 93(1997).

    [28] A Kyrtsos, M Matsubara, E Bellotti. On the feasibility of p-type Ga2O3. Appl Phys Lett, 112, 032108(2018).

    [29] K D Chabak, J P McCandless, N A Moser et al. Recessed-gate enhancement-mode β-Ga2O3 MOSFETs. IEEE Electron Device Lett, 39, 67(2018).

    [30] Z Q Feng, Y C Cai, Z Li et al. Design and fabrication of field-plated normally off β-Ga2O3 MOSFET with laminated-ferroelectric charge storage gate for high power application. Appl Phys Lett, 116, 243503(2020).

    [31] T Kamimura, Y Nakata, M H Wong et al. Normally-off Ga2O3 MOSFETs with unintentionally nitrogen-doped channel layer grown by plasma-assisted molecular beam epitaxy. IEEE Electron Device Lett, 40, 1064(2019).

    [32] X Z Zhou, Q Liu, W B Hao et al. Normally-off β-Ga2O3 power heterojunction field-effect-transistor realized by p-NiO and recessed-gate. 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 101(2022).

    [33] Z X Feng, A F M Anhar Uddin Bhuiyan, M R Karim et al. MOCVD homoepitaxy of Si-doped (010) β-Ga2O3 thin films with superior transport properties. Appl Phys Lett, 114, 250601(2019).

    [34] G Seryogin, F Alema, N Valente et al. MOCVD growth of high purity Ga2O3 epitaxial films using trimethylgallium precursor. Appl Phys Lett, 117, 262101(2020).

    [35] T Zhang, Y F Li, Q Cheng et al. Influence of O2 pulse on the β-Ga2O3 films deposited by pulsed MOCVD. Ceram Int, 48, 8268(2022).

    [36] A Hernandez, M M Islam, P Saddatkia et al. MOCVD growth and characterization of conductive homoepitaxial Si-doped Ga2O3. Results Phys, 25, 104167(2021).

    [37] F Alema, B Hertog, A Osinsky et al. Fast growth rate of epitaxial β-Ga2O3 by close coupled showerhead MOCVD. J Cryst Growth, 475, 77(2017).

    [38] Anooz S Bin, R Grüneberg, C Wouters et al. Step flow growth of β-Ga2O3 thin films on vicinal (100) β-Ga2O3 substrates grown by MOVPE. Appl Phys Lett, 116, 182106(2020).

    [39] R Schewski, M Baldini, K Irmscher et al. Evolution of planar defects during homoepitaxial growth of β-Ga2O3 layers on (100) substrates—a quantitative model. J Appl Phys, 120, 225308(2016).

    [40] K D Chabak, N Moser, A J Green et al. Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage. Appl Phys Lett, 109, 213501(2016).

    [41] J E Hogan, S W Kaun, E Ahmadi et al. Chlorine-based dry etching of β-Ga2O3. Semicond Sci Technol, 31, 065006(2016).

    [42] H Dong, S B Long, H D Sun et al. Fast switching β-Ga2O3 power MOSFET with a trench-gate structure. IEEE Electron Device Lett, 40, 1385(2019).

    [43] A J Green, K D Chabak, M Baldini et al. β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett, 38, 790(2017).

    [44] H B Do, A V Phan-Gia, V Q Nguyen et al. Optimization of normally-off β-Ga2O3 MOSFET with high Ion and BFOM: A TCAD study. AIP Adv, 12, 065024(2022).

    [45] H B Do, Q H Luc, M T H Ha et al. Investigation of Mo/Ti/AlN/HfO2 high-k metal gate stack for low power consumption InGaAs NMOS device application. IEEE Electron Device Lett, 38, 552(2017).

    [46] M H Wong, Y Nakata, A Kuramata et al. Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain. Appl Phys Express, 10, 041101(2017).

    [47] L L Guo, S Z Luan, H P Zhang et al. Analytical model and structure of the multilayer enhancement-mode β-Ga2O3 planar MOSFETs. IEEE Trans Electron Devices, 69, 682(2022).

    [48] X Z Zhou, Q Liu, G W Xu et al. Realizing high-performance β-Ga2O3 MOSFET by using variation of lateral doping: A TCAD study. IEEE Trans Electron Devices, 68, 1501(2021).

    [49] R Stengl, U Gosele. Variation of lateral doping - A new concept to avoid high voltage breakdown of planar junctions. 1985 International Electron Devices Meeting, 154(2005).

    [50] Y J Lv, X Y Zhou, S B Long et al. Enhancement-mode β-Ga2O3 metal-oxide-semiconductor field-effect transistor with high breakdown voltage over 3000 V realized by oxygen annealing. Phys Status Solidi RRL, 14, 1900586(2020).

    [51] S Ghosh, M Baral, R Kamparath et al. Investigations on band commutativity at all oxide p-type NiO/n-type β-Ga2O3 heterojunction using photoelectron spectroscopy. Appl Phys Lett, 115, 251603(2019).

    [52] X Lu, X D Zhou, H X Jiang et al. 1-kV sputtered p-NiO/n-Ga2O3 heterojunction diodes with an ultra-low leakage current below 1 μA/cm2. IEEE Electron Device Lett, 41, 449(2020).

    [53] H H Gong, X H Chen, Y Xu et al. A 1.86-kV double-layered NiO/β-Ga2O3 vertical p–n heterojunction diode. Appl Phys Lett, 117, 022104(2020).

    [54] C L Wang, H H Gong, W N Lei et al. Demonstration of the p-NiOx/n-Ga2O3 heterojunction gate FETs and diodes with BV2/Ron, sp figures of merit of 0.39 GW/cm2 and 1.38 GW/cm2. IEEE Electron Device Lett, 42, 485(2021).

    [55] W N Lei, K Dang, H Zhou et al. Proposal and simulation of Ga2O3 MOSFET with PN heterojunction structure for high-performance E-mode operation. IEEE Trans Electron Devices, 69, 3617(2022).

    [56] H Murakami, K Nomura, K Goto et al. Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl Phys Express, 8, 015503(2015).

    [57] M H Wong, K Goto, H Murakami et al. Current aperture vertical β-Ga2O3 MOSFETs fabricated by N- and Si-ion implantation doping. IEEE Electron Device Lett, 40, 431(2019).

    [58] M H Wong, H Murakami, Y Kumagai et al. Enhancement-mode β-Ga2O3 current aperture vertical MOSFETs with N-ion-implanted blocker. IEEE Electron Device Lett, 41, 296(2020).

    [59] K Zeng, R Soman, Z L Bian et al. Vertical Ga2O3 MOSFET with magnesium diffused current blocking layer. IEEE Electron Device Lett, 43, 1527(2022).

    [60] X Z Zhou, Y J Ma, G W Xu et al. Enhancement-mode β-Ga2O3 U-shaped gate trench vertical MOSFET realized by oxygen annealing. Appl Phys Lett, 121, 223501(2022).

    [61] Y Ma, X Zhou, W Tang et al. 702.3 A∙ cm–2/10.4 mΩ∙cm2 vertical β-Ga2O3 U-shape trench gate MOSFET with N-ion implantation. IEEE Electron Device Lett, 44, 384(2023).

    [62] Z Y Hu, K Nomoto, W S Li et al. Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1 kV. IEEE Electron Device Lett, 39, 869(2018).

    [63] Z Y Hu, K Nomoto, W S Li et al. 1.6 kV vertical Ga2O3 FinFETs with source-connected field plates and normally-off operation. 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), 483(2019).

    [64] W Li, K Nomoto, Z Hu et al. Single and multi-fin normally-off Ga2O3 vertical transistors with a breakdown voltage over 2.6 kV. 2019 IEEE International Electron Devices Meeting (IEDM), 12.4.1(2020).

    [65] K Zeng, A Vaidya, U Singisetti. 1.85 kV breakdown voltage in lateral field-plated Ga2O3 MOSFETs. IEEE Electron Device Lett, 39, 1385(2018).

    [66] J K Mun, K Cho, W Chang et al. 2.32 kV breakdown voltage lateral β-Ga2O3 MOSFETs with source-connected field plate. ECS J Solid State Sci Technol, 8, Q3079(2019).

    [67] Y B Wang, H H Gong, X L Jia et al. Demonstration of β-Ga2O3 superjunction-equivalent MOSFETs. IEEE Trans Electron Devices, 69, 2203(2022).

    [68] G Deboy, N Marz, J P Stengl et al. A new generation of high voltage MOSFETs breaks the limit line of silicon. International Electron Devices Meeting, 683(1998).

    [69] J Kim, K Kim. A novel 4H-SiC super junction UMOSFET with heterojunction diode for enhanced reverse recovery characteristics. 2020 International Conference on Electronics, Information, and Communication (ICEIC), 1(2020).

    [70] A Nakajima, Y Sumida, M H Dhyani et al. GaN-based super heterojunction field effect transistors using the polarization junction concept. IEEE Electron Device Lett, 32, 542(2011).

    [71] S H Kim, D Shoemaker, B Chatterjee et al. Thermally-aware layout design of β-Ga2O3 lateral MOSFETs. IEEE Trans Electron Devices, 69, 1251(2022).

    [72] S H Kim, J Spencer lundh, D Shoemaker et al. Device-level transient cooling of β-Ga2O3 MOSFETs. 2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm), 1(2022).

    Botong Li, Xiaodong Zhang, Li Zhang, Yongjian Ma, Wenbo Tang, Tiwei Chen, Yu Hu, Xin Zhou, Chunxu Bian, Chunhong Zeng, Tao Ju, Zhongming Zeng, Baoshun Zhang. A comprehensive review of recent progress on enhancement-mode β-Ga2O3 FETs: Growth, devices and properties[J]. Journal of Semiconductors, 2023, 44(6): 061801
    Download Citation