• Laser & Optoelectronics Progress
  • Vol. 58, Issue 5, 0500007 (2021)
Minshuang Huang*, Youwen Xu, and Miao Cheng
Author Affiliations
  • Beijing Key Laboratory of Opto-Mechatronic Equipment Technology, Beijing Institute of Petrochemical Technology, Beijing 102617
  • show less
    DOI: 10.3788/LOP202158.0500007 Cite this Article Set citation alerts
    Minshuang Huang, Youwen Xu, Miao Cheng. Atmospheric Pressure and Large Volume Non-Equilibrium Plasma Discharge Technology[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0500007 Copy Citation Text show less
    References

    [1] Yu J L, He L M, Ding W et al. Design of plasma igniter and research on discharge characteristics. Journal of Nanjing University of Aeronautics & Astronautics, 48, 396-401(2016).

    [2] Huang C, Huang K, Yi A P et al. 200 W mid-infrared HF chemical laser with repetition rate. Chinese Journal of Lasers, 46, 0801005(2019).

    [3] Pekárek S, Mikeš J, Krýsa J. Comparative study of TiO2 and ZnO photocatalysts for the enhancement of ozone generation by surface dielectric barrier discharge in air. Applied Catalysis A: General, 502, 122-128(2015).

    [4] Du Y J, Nayak G, Oinuma G et al. Effect of water vapor on plasma morphology, OH and H2O2 production in He and Ar atmospheric pressure dielectric barrier discharges. Journal of Physics D: Applied Physics, 50, 145201(2017).

    [5] Pardeshi H, Patil P P, Bange J. Development of atmospheric pressure glow discharge plasma assisted CVD system for the deposition of SiOx coatings. Journal of Instrumentation, 14, P06026(2019).

    [6] Zeniou A, Puač N, Škoro N et al. Electrical and optical characterization of an atmospheric pressure, uniform, large-area processing, dielectric barrier discharge. Journal of Physics D: Applied Physics, 50, 135204(2017).

    [7] Stark R H, Schoenbach K H. Direct current high-pressure glow discharges. Journal of Applied Physics, 85, 2075-2080(1999).

    [8] Zhou Z Y, Li H, Cui Y L et al. Optically pumped 4 μm CW HBr gas laser based on hollow-core fiber. Acta Optica Sinica, 40, 1614001(2020).

    [9] Feng S J, Dong L Q, Ma D N et al. Terahertz waves generated through plasma under linear electrodes. Acta Optica Sinica, 40, 1030001(2020).

    [10] Morrow R, Lowke J J. Streamer propagation in air. Journal of Physics D: Applied Physics, 30, 614-627(1997).

    [11] Akishev Y S, Deryugin A A, Kochetov I V et al. DC glow discharge in air flow at atmospheric pressure in connection with waste gases treatment. Journal of Physics D: Applied Physics, 26, 1630-1637(1999).

    [12] Akishev Y, Grushin M, Kochetov I et al. Negative corona, glow and spark discharges in ambient air and transitions between them. Plasma Sources Science and Technology, 14, S18-S25(2005).

    [13] Vertriest R, Morent R, Dewulf J et al. Multi-pin-to-plate atmospheric glow discharge for the removal of volatile organic compounds in waste air. Plasma Sources Science and Technology, 12, 412-416(2003).

    [14] Vandenbroucke A M, Mora M, Jiménez-Sanchidrián C et al. TCE abatement with a plasma-catalytic combined system using MnO2 as catalyst. Applied Catalysis B: Environmental, 156/157, 94-100(2014).

    [15] Förster S, Mohr C, Viöl W. Investigations of an atmospheric pressure plasma jet by optical emission spectroscopy. Surface and Coatings Technology, 200, 827-830(2005).

    [16] Kunhardt E E. Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas. IEEE Transactions on Plasma Science, 28, 189-200(2000).

    [17] Park S H, Cho T S, Becker K H et al. Capillary plasma electrode discharge as an intense and efficient source of vacuum ultraviolet radiation for plasma display. IEEE Transactions on Plasma Science, 37, 1611-1614(2009).

    [18] Christiansen J, Schultheiss C. Production of high current particle beams by low pressure spark discharges. Zeitschrift Für Physik A Atoms and Nuclei, 290, 35-41(1979).

    [19] Nakamura K, Yukawa N, Mochizuki T et al. Optimization of the discharge characteristics of a laser device employing a plasma electrode. Applied Physics Letters, 49, 1493-1495(1986).

    [20] Yin H, Cross A W, He W et al. Pseudospark experiments: cherenkov interaction and electron beam post-acceleration. IEEE Transactions on Plasma Science, 32, 233-239(2004).

    [21] Kumar N, Pareek N, Pal U N et al. Performance evaluation of self-breakdown-based single-gap plasma cathode electron gun. Pramana, 82, 1075-1084(2014).

    [22] Lamba R P, Pathania V, Meena B L et al. Investigations of a high current linear aperture radial multichannel pseudospark switch. The Review of Scientific Instruments, 86, 103508(2015).

    [23] Kumar N, Lamba R P, Hossain A M et al. A tapered multi-gap multi-aperture pseudospark-sourced electron gun based X-band slow wave oscillator. Applied Physics Letters, 111, 213502(2017).

    [24] Sugawara M, Murata K, Ohshima T et al. A hollow-cathode discharge as a cold uniform plasma source. Journal of Physics D: Applied Physics, 14, L137-L140(1981).

    [25] Zhang J, Zhao J P, Zhang Q G. The breakdown characteristics of multigap pseudospark under nanosecond pulsed voltages. IEEE Transactions on Plasma Science, 42, 3886-3890(2014).

    [26] Cross A W, Yin H, He W et al. Generation and application of pseudospark-sourced electron beams. Journal of Physics D: Applied Physics, 40, 1953(2007).

    [27] Jiang C Q, Kuthi A, Gundersen M A et al. Pseudospark electron beam as an excitation source for extreme ultraviolet generation. Applied Physics Letters, 87, 131501(2005).

    [28] Taylan O, Berberoglu H. Dissociation of carbon dioxide using a microhollow cathode discharge plasma reactor: effects of applied voltage, flow rate and concentration. Plasma Sources Science and Technology, 24, 015006(2015).

    [29] Schoenbach K H, Verhappen R, Tessnow T et al. Micro hollow cathode discharges. Applied Physics Letters, 68, 13-15(1996).

    [30] Sankaran R M, Giapis K P. High-pressure micro-discharges in etching and deposition applications. Journal of Physics D: Applied Physics, 36, 2914-2921(2003).

    [31] Chen J, Park S J, Fan Z F et al. Development and characterization of micromachined hollow cathode plasma display devices. Journal of Microelectromechanical Systems, 11, 536-543(2002).

    [32] Park S J, Chen J, Wagner C J et al. Microdischarge arrays: a new family of photonic devices. IEEE Journal of Selected Topics in Quantum Electronics, 8, 139-147(2002).

    [33] Allmen P V, Sadler D J, Jensen C et al. Linear, segmented microdischarge array with an active length of∼1 cm: CW and pulsed operation in the rare gases and evidence of gain on the 460.30 nm transition of Xe+. Applied Physics Letters, 82, 4447-4449(2003).

    [34] Allmen P V, McCain S T, Ostrom N P et al. Ceramic microdischarge arrays with individually ballasted pixels. Applied Physics Letters, 82, 2562-2564(2003).

    [35] Sankaran R M, Giapis K P. Hollow cathode sustained plasma microjets: characterization and application to diamond deposition. Journal of Applied Physics, 92, 2406-2411(2002).

    [36] El-Habachi A, Schoenbach K H. Emission of excimer radiation from direct current, high-pressure hollow cathode discharges. Applied Physics Letters, 72, 22-24(1998).

    [37] El-Habachi A, Schoenbach K H. Generation of intense excimer radiation from high-pressure hollow cathode discharges. Applied Physics Letters, 73, 885-887(1998).

    [38] Moselhy M, Shi W, Stark R H et al. Xenon excimer emission from pulsed microhollow cathode discharges. Applied Physics Letters, 79, 1240-1242(2001).

    [39] Kurunczi P, Lopez J, Shah H et al. Excimer formation in high-pressure microhollow cathode discharge plasmas in helium initiated by low-energy electron collisions. International Journal of Mass Spectrometry, 205, 277-283(2001).

    [40] Park H I, Lee T I, Park K W et al. Formation of large-volume, high-pressure plasmas in microhollow cathode discharges. Applied Physics Letters, 82, 3191-3193(2003).

    [41] Wang X P, Huang Q L, Ding S G et al. Micro hollow cathode excited dielectric barrier discharge (DBD) plasma bubble and the application in organic wastewater treatment. Separation and Purification Technology, 240, 116659(2020).

    [42] Watanabe J, Ogino A, Nagatsu M. Characteristics of direct current microhollow cathode discharges combined with dielectric barrier discharges as preionizer. Applied Physics Letters, 91, 221507(2007).

    [43] Homola T, Krumpolec R, Zemánek M et al. An array of micro-hollow surface dielectric barrier discharges for large-area atmospheric-pressure surface treatments. Plasma Chemistry and Plasma Processing, 37, 1149-1163(2017).

    [44] Tachibana K, Nakamura T, Motomura H. Monolithic structure of integrated coaxial microhollow dielectric barrier discharges: characterization for environmental and biomedical applications. Japanese Journal of Applied Physics, 55, 07LB01(2016).

    [45] Heming R, Michels A, Olenici S B et al. Electrical generators driving microhollow and dielectric barrier discharges applied for analytical chemistry. Analytical and Bioanalytical Chemistry, 395, 611-618(2009).

    [46] Taylan O, Berberoglu H. Dissociation of carbon dioxide using a microhollow cathode discharge plasma reactor: effects of applied voltage, flow rate and concentration. Plasma Sources Science and Technology, 24, 015006(2015).

    Minshuang Huang, Youwen Xu, Miao Cheng. Atmospheric Pressure and Large Volume Non-Equilibrium Plasma Discharge Technology[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0500007
    Download Citation