• Laser & Optoelectronics Progress
  • Vol. 58, Issue 5, 0500007 (2021)
Minshuang Huang*, Youwen Xu, and Miao Cheng
Author Affiliations
  • Beijing Key Laboratory of Opto-Mechatronic Equipment Technology, Beijing Institute of Petrochemical Technology, Beijing 102617
  • show less
    DOI: 10.3788/LOP202158.0500007 Cite this Article Set citation alerts
    Minshuang Huang, Youwen Xu, Miao Cheng. Atmospheric Pressure and Large Volume Non-Equilibrium Plasma Discharge Technology[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0500007 Copy Citation Text show less
    Schematic of gas discharge generating non-equilibrium plasma
    Fig. 1. Schematic of gas discharge generating non-equilibrium plasma
    High-voltage large-volume discharge with limited current density. (a) Array needle cathode discharge with ballast resistance[12];(b) dielectric barrier discharge plasma jet source structure and discharge image[15];(c) capillary plasma pelectrode[16];(d) laser microscopic image of DBD-based plasma display front substrate transformed into CPED structure and laser micrograph of the capillary on the surface of the medium[17]
    Fig. 2. High-voltage large-volume discharge with limited current density. (a) Array needle cathode discharge with ballast resistance[12];(b) dielectric barrier discharge plasma jet source structure and discharge image[15];(c) capillary plasma pelectrode[16];(d) laser microscopic image of DBD-based plasma display front substrate transformed into CPED structure and laser micrograph of the capillary on the surface of the medium[17]
    Schematic diagram of the discharge device of the plasma cathode. (a) Schematic of the laser discharge device using a plasma electrode in which the relative timing of the volume discharge and the surface discharge can be controlled[19];(b) schematic for the post-acceleration experiment of the plasma cathode discharge electron beam[20];(c) self-breakdown-based single-gap plasma cathode electron gun[21];(d) high current linear aperture radial multichannel pseudospark switch[22];(e) a tapered multi-gap multi-aperture pseudospark-sourced electron gun based X-band slow wave oscillator[23]
    Fig. 3. Schematic diagram of the discharge device of the plasma cathode. (a) Schematic of the laser discharge device using a plasma electrode in which the relative timing of the volume discharge and the surface discharge can be controlled[19];(b) schematic for the post-acceleration experiment of the plasma cathode discharge electron beam[20];(c) self-breakdown-based single-gap plasma cathode electron gun[21];(d) high current linear aperture radial multichannel pseudospark switch[22];(e) a tapered multi-gap multi-aperture pseudospark-sourced electron gun based X-band slow wave oscillator[23]
    Micro-hollow electrode structure and volt-ampere characteristic curve [7]
    Fig. 4. Micro-hollow electrode structure and volt-ampere characteristic curve [7]
    Several representative micro hollow cathode discharge structures[29-33].(a) Micro hollow discharge electrode structure and 2×2 array hollow cathode discharge photos;(b) micro hollow discharge etching silicon substrate device and etched silicon hole SEM photo;(c) micro hollow cathode structure of inverted pyramid and 10×10 array discharge photos;(d) linear array discharge device composed of micro hollow cathode discharge unit
    Fig. 5. Several representative micro hollow cathode discharge structures[29-33].(a) Micro hollow discharge electrode structure and 2×2 array hollow cathode discharge photos;(b) micro hollow discharge etching silicon substrate device and etched silicon hole SEM photo;(c) micro hollow cathode structure of inverted pyramid and 10×10 array discharge photos;(d) linear array discharge device composed of micro hollow cathode discharge unit
    Capillary micro hollow cathode discharge [35]. (a) Schematic diagram of hollow cathode plasma mini-jet generator and optical test; (b) four-tube circuit with single power supply and ballast resistance;(c) photograph of argon plasma micro-jet discharge when the distance between electrodes is 2 mm
    Fig. 6. Capillary micro hollow cathode discharge [35]. (a) Schematic diagram of hollow cathode plasma mini-jet generator and optical test; (b) four-tube circuit with single power supply and ballast resistance;(c) photograph of argon plasma micro-jet discharge when the distance between electrodes is 2 mm
    Glow discharge maintained by micro hollow cathode discharge[7]
    Fig. 7. Glow discharge maintained by micro hollow cathode discharge[7]
    Micro hollow cathode excited dielectric barrier discharge electrode structure[41-42].(a) Schematic diagram of CM-DBD experiments;(b) schematic drawing of the combined MHCD-DBD electrode system
    Fig. 8. Micro hollow cathode excited dielectric barrier discharge electrode structure[41-42].(a) Schematic diagram of CM-DBD experiments;(b) schematic drawing of the combined MHCD-DBD electrode system
    Minshuang Huang, Youwen Xu, Miao Cheng. Atmospheric Pressure and Large Volume Non-Equilibrium Plasma Discharge Technology[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0500007
    Download Citation