• Laser & Optoelectronics Progress
  • Vol. 56, Issue 17, 170605 (2019)
Weiwei Li, Xiaojin Zhang, Hang Wang, and Zhengqian Luo*
Author Affiliations
  • Department of Electronic Engineering, Xiamen University, Fujian, Xiamen 361005, China
  • show less
    DOI: 10.3788/LOP56.170605 Cite this Article Set citation alerts
    Weiwei Li, Xiaojin Zhang, Hang Wang, Zhengqian Luo. Research Progress of Mid-Infrared Rare Earth Ion-Doped Fiber Lasers at 3 μm[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170605 Copy Citation Text show less
    References

    [1] Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 6, 423-431(2012).

    [2] Guan X F, Wang J W, Zhang Y Z et al. Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er∶Y2O3 ceramic lasers[J]. Photonics Research, 6, 830-836(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ180831000001TpVsYv

    [3] Bandyopadhyay N, Bai Y, Tsao S et al. Room temperature continuous wave operation of λ~3-3.2 μm quantum cascade lasers[J]. Applied Physics Letters, 101, 241110(2012).

    [4] Fecko C J, Loparo J J, Tokmakoff A. Generation of 45 femtosecond pulses at 3 μm with a KNbO3 optical parametric amplifier[J]. Optics Communications, 241, 521-528(2004).

    [5] Chen H, Li J F, Ou Z H et al. Progress of mid-infrared fiber lasers[J]. Laser & Optoelectronics Progress, 48, 111402(2011).

    [6] Snitzer E. Proposed fiber cavities for optical masers[J]. Journal of Applied Physics, 32, 36-39(1961).

    [7] Brierley M C, France P W. Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fibre[J]. Electronics Letters, 24, 935-937(1988).

    [8] Quimby R S. Minis-calco W J. Effect of upconversion on 2.7- μm laser action in Er 3+ . [C]∥Conference on Lasers and Electro-Optics, April 25-29, 1988, Anaheim, California, United States. Washington, D.C.: OSA, FE3(1988).

    [9] Allain J Y, Monerie M, Poignant H. Erbium-doped fluorozirconate single-mode fibre lasing at 2.71 μm[J]. Electronics Letters, 25, 28-29(1989).

    [10] Yanagita H, Masuda I, Yamashita T et al. Diode laser pumped Er 3+ fibre laser operation between 2.7-2.8 μm [J]. Electronics Letters, 26, 1836-1838(1990).

    [11] Allen R, Esterowitz L, Ginther R J. Diode-pumped single-mode fluorozirconate fiber laser from the 4I112→4I13/2 transition in erbium [J]. Applied Physics Letters, 56, 1635-1637(1990).

    [12] Allain J Y, Monerie M, Poignant H. Energy transfer in Er 3+/Pr 3+-doped fluoride glass fibres and application to lasing at 2.7 μm [J]. Electronics Letters, 27, 445-447(1991).

    [13] Frerichs C. All optical modulation of a 2.7 μm erbium-doped fluorozirconate fiber laser. [C]∥Advanced Solid State Lasers, February 1, 1993, New Orleans, Louisiana, United States. Washington, D.C.: OSA, ML2(1993).

    [14] Frerichs C. Efficient ER 3+-doped CW fluorozirconate fiber laser operating at 2.7 μm pumped at 980 nm [J]. International Journal of Infrared and Millimeter Waves, 15, 635-649(1994).

    [15] Frerichs C, Tauermann T. Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm[J]. Electronics Letters, 30, 706-707(1994).

    [16] Schneider J. Continuous-wavelength lasing at 2.7 μm in Er 3+-doped fluoride fibers with low P 3+-codoping . [C]∥Conference on Lasers and Electro-Optics, May 8-13, 1994, Anaheim, California, United States. Washington, D.C.: OSA, CTuK81(1994).

    [17] Schneider J, Hauschild D, Frerichs C et al. Highly efficient Er 3+∶Pr 3+-codoped CW fluorozirconate fiber laser operating at 2.7 μm [J]. International Journal of Infrared and Millimeter Waves, 15, 1907-1922(1994).

    [18] Bedö S, Lüthy W, Weber H P. Limits of the output power in Er 3+∶ZBLAN singlemode fibre lasers [J]. Electronics Letters, 31, 199-200(1995).

    [19] Ghisler C, Pollnau M, Bunea C et al. Up-conversion cascade laser at 1.7 μm with simultaneous 2.7 μm lasing in erbium ZBLAN fibre[J]. Electronics Letters, 31, 373-374(1995).

    [20] Bedö S, Pollnau M, Lüthy W et al. Saturation of the 2.71 μm laser output in erbium-doped ZBLAN fibers[J]. Optics Communications, 116, 81-86(1995).

    [21] Pollnau M, Ghisler C, Bunea G et al. 150 mW unsaturated output power at 3 μm from a single-mode-fiber erbium cascade laser[J]. Applied Physics Letters, 66, 3564-3566(1995).

    [22] Schneider J. Mid-infrared fluoride fiber lasers in multiple cascade operation[J]. IEEE Photonics Technology Letters, 7, 354-356(1995).

    [23] Pollnau M, Spring R, Ghisler C et al. Efficiency of erbium 3-μm crystal and fiber lasers[J]. IEEE Journal of Quantum Electronics, 32, 657-663(1996).

    [24] Frerichs C, Unrau U B. Passive Q-switching and mode-locking of erbium-doped fluoride fiber lasers at 2.7 μm[J]. Optical Fiber Technology, 2, 358-366(1996).

    [25] Pollnau M, Ghisler C, Lüthy W et al. Three-transition cascade erbium laser at 1.7, 2.7, and 1.6 μm[J]. Optics Letters, 22, 612-614(1997).

    [26] Poppe E, Srinivasan B, Jain R K. 980 nm diode-pumped continuous wave mid-IR (2.7 μm) fibre laser[J]. Electronics Letters, 34, 2331-2333(1998).

    [27] Srinivasan B, Poppe E, Jain R K. 40 mW single-transverse-mode mid-IR (2.7 μm) CW output from a simple mirror-free 780-nm diode-pympable fiber laser. [C]∥Conference on Lasers and Electro-Optics, May 3-8, 1998, San Francisco, California, United States. Washington, D.C.: OSA, CWM2(1998).

    [28] Srinivasan B, Tafoya J, Jain R K. High-power “watt-level” CW operation of diode-pumped 2.7 μm fiber lasers using efficient cross-relaxation and energy transfer mechanisms[J]. Optics Express, 4, 490-495(1999).

    [29] Jackson S D, King T A, Pollnau M. Diode-pumped 1.7-W erbium 3-μm fiber laser[J]. Optics Letters, 24, 1133-1135(1999).

    [30] Sandrock T, Fischer D, Glas P et al. Diode-pumped 1-W Er-doped fluoride glass M-profile fiber laser emitting at 2.8 μm[J]. Optics Letters, 24, 1284-1286(1999).

    [31] Dickinson B C, Golding P S, Jackson S D et al. Gain-switched 3-μm Er∶Pr-codoped fiber laser. [C]∥Conference on Lasers and Electro-Optics (CLEO 2000). Technical Digest. Postconference Edition. TOPS Vol.39 (IEEE Cat. No.00CH37088), May 7-12, 2000, San Francisco, CA, USA. New York: IEEE, CMP3(2000).

    [32] Jackson S D, King T A, Pollnau M. Efficient high power operation of erbium 3 μm fibre laser diode-pumped at 975 nm[J]. Electronics Letters, 36, 223-224(2000).

    [33] Libatique N J C, Tafoya J D, Feng S H et al. . A compact diode-pumped passively Q-switched mid-IR fiber laser. [C]∥Advanced Solid State Lasers, February 13, 2000, Davos, Switzerland. Washington, D.C.: OSA, MD2(2000).

    [34] Libatique N J C, Tafoya J D, Viswanathan N et al. . A “field-usable” diode-pumped ~120-nm wavelength-tunable CW mid-IR fiber laser. [C]∥Conference on Lasers and Electro-Optics, May 7-11, 2000, San Francisco, California United States. Washington, D.C.: OSA, CThV8(2000).

    [35] Dickinson B C, Golding P S, Pollnau M et al. Investigation of a 791-nm pulsed-pumped 2.7- μm Er-doped ZBLAN fibre laser[J]. Optics Communications, 191, 315-321(2001).

    [36] Pollnan M, Jackson S D. Erbium 3 μm fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 7, 30-40(2001).

    [37] Linden K J. Fiber laser with 1.2-W CW output power at 2712 nm[J]. IEEE Photonics Technology Letters, 16, 401-403(2004).

    [38] Coleman D J, King T A, Ko D K et al. Q-switched operation of a 2.7 μm cladding-pumped Er 3+/Pr 3+ codoped ZBLAN fibre laser [J]. Optics Communications, 236, 379-385(2004).

    [39] Segi T, Shima K, Sakai T et al. 3-μm-band high output erbium-doped fiber lasers. [C]∥Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, May 16-21, 2004, San Francisco, California, United States. Wash, CThZ5(2004).

    [40] Tafoya J, Pierce J W, Jain R K et al. Efficient and compact high-power mid-IR (~3 μm) lasers for surgical applications[J]. Proceedings of SPIE, 5312, 218-222(2004).

    [41] Zhu X S, Jain R. 10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser[J]. Optics Letters, 32, 26-28(2007).

    [42] Zhu X S, Jain R. Compact 2 W wavelength-tunable Er∶ZBLAN mid-infrared fiber laser[J]. Optics Letters, 32, 2381-2383(2007).

    [43] Zhu X S, Jain R. Watt-level 100-nm tunable 3-μm fiber laser[J]. IEEE Photonics Technology Letters, 20, 156-158(2008).

    [44] Zhu X S, Jain R. Watt-level Er-doped and Er-Pr-codoped ZBLAN fiber amplifiers at the 2.7-2.8 μm wavelength range[J]. Optics Letters, 33, 1578-1580(2008).

    [45] Jackson S D. High-power erbium cascade fibre laser[J]. Electronics Letters, 45, 830-832(2009).

    [46] Bernier M, Faucher D, Caron N et al. Highly stable and efficient erbium-doped 2.8 μm all fiber laser[J]. Optics Express, 17, 16941-16946(2009).

    [47] Tokita S, Murakami M, Shimizu S et al. Liquid-cooled 24 W mid-infrared Er∶ZBLAN fiber laser[J]. Optics Letters, 34, 3062-3064(2009).

    [48] Faucher D, Bernier M, Caron N et al. Erbium-doped all-fiber laser at 2.94 μm[J]. Optics Letters, 34, 3313-3315(2009).

    [49] Tokita S, Hirokane M, Murakami M et al. Stable 10 W Er∶ZBLAN fiber laser operating at 2.71-2.88 μm[J]. Optics Letters, 35, 3943-3945(2010).

    [50] Faucher D, Bernier M, Androz G et al. 20 W passively cooled single-mode all-fiber laser at 2.8 μm[J]. Optics Letters, 36, 1104-1106(2011).

    [51] Gorjan M, Petkovšek R. Marin ek M, et al. High-power pulsed diode-pumped Er∶ZBLAN fiber laser [J]. Optics Letters, 36, 1923-1925(2011).

    [52] Tokita S, Murakami M, Shimizu S et al. 12 W Q-switched Er∶ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 36, 2812-2814(2011).

    [53] Faucher D, Caron N, Bernier M et al. QCW all-fiber laser at 2.94 μm. [C]∥Lasers, Sources, and Related Photonic Devices, February 1-2, 2012, San Diego, California, United States. Washington, D.C.: OSA, FTh4A, 6(2012).

    [54] Tsai T Y, Fang Y C, Tsao H X et al. Passively cascade-pulsed erbium ZBLAN all-fiber laser[J]. Optics Express, 20, 12787-12792(2012).

    [55] Wei C, Zhu X S, Norwood R A et al. Passively Q-switched 2.8- μm nanosecond fiber laser[J]. IEEE Photonics Technology Letters, 24, 1741-1744(2012).

    [56] Wei C, Zhu X S, Norwood R A et al. Passively continuous-wave mode-locked Er 3+-doped ZBLAN fiber laser at 2.8 μm [J]. Optics Letters, 37, 3849-3851(2012).

    [57] Tokita S, Murakami M, Shimizu S et al. Graphene Q-switching of a 3 μm Er∶ZBLAN fiber laser. [C]∥Advanced Solid-State Lasers Congress, October 27-November 1, 2013, Paris France. Washington, D.C.: OSA, AF2A, 9(2013).

    [58] Wei C, Zhu X S, Wang F et al. Graphene Q-switched 2.78 μm Er 3+-doped fluoride fiber laser [J]. Optics Letters, 38, 3233-3236(2013).

    [59] Haboucha A, Fortin V, Bernier M et al. Fiber Bragg grating stabilization of a passively mode-locked 2.8 μm Er 3+∶fluoride glass fiber laser [J]. Optics Letters, 39, 3294-3297(2014).

    [60] Zhu G W, Zhu X S, Norwood R A et al. Experimental and numerical investigations on Q-switched laser-seeded fiber MOPA at 2.8 μm[J]. Journal of Lightwave Technology, 32, 4553-4557(2014).

    [61] Shen Y L, Huang K, Zhou S Q et al. Gain-switched 2.8 μm Er 3+-doped double-clad ZBLAN fiber laser [J]. Proceedings of SPIE, 9543, 95431E(2015).

    [62] Bernier M, Michaud-Belleau V, Levasseur S et al. All-fiber DFB laser operating at 2.8 μm[J]. Optics Letters, 40, 81-84(2015).

    [63] Duval S, Bernier M, Fortin V et al. Femtosecond fiber lasers reach the mid-infrared[J]. Optica, 2, 623-626(2015).

    [64] Fortin V, Bernier M, Bah S T et al. 30 W fluoride glass all-fiber laser at 2.94 μm[J]. Optics Letters, 40, 2882-2885(2015).

    [65] Hu T, Jackson S D, Hudson D D. Ultrafast pulses from a mid-infrared fiber laser[J]. Optics Letters, 40, 4226-4228(2015).

    [66] Hu T, Jackson S D, Hudson D D. A mid-infrared mode-locked fiber laser for frequency combs. [C]∥Nonlinear Optics, July 26-31, 2015, Kauai, Hawaii, United States. Washington, D.C.: OSA, NTh2A, 4(2015).

    [67] Hu T, Jackson S D, Hudson D D. Femtosecond mode-locked pulses from a mid-infrared fiber laser. [C]∥2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, June 21-25, 2015, Munich, Germany. Washington, D.C.: OSA, CJ_5_2(2015).

    [68] Qin Z P, Xie G Q, Zhang H et al. Black phosphorus as saturable absorber for the Q-switched Er∶ZBLAN fiber laser at 2.8 μm[J]. Optics Express, 23, 24713-24718(2015).

    [69] Tang P H, Qin Z P, Liu J et al. Watt-level passively mode-locked Er 3+-doped ZBLAN fiber laser at 2.8 μm [J]. Optics Letters, 40, 4855-4888(2015).

    [70] Wan P, Yang L M, Bai S et al. High energy 3 μm ultrafast pulsed fiber laser[J]. Optics Express, 23, 9527-9532(2015).

    [71] Duval S, Olivier M, Fortin V et al. 23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 μm[J]. Proceedings of SPIE, 9728, 972802(2016).

    [72] Duval S, Gauthier J C, Robichaud L R et al. Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 μm[J]. Optics Letters, 41, 5294-5297(2016).

    [73] Shen Y L, Wang Y S, Chen H W et al. High average power continuous-wave mode-locked mid-infrared fiber laser[J]. Chinese Journal of Lasers, 45, 0615001(2018).

    [74] Henderson-Sapir O, Jackson S D, Ottaway D J. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser[J]. Optics Letters, 41, 1676-1679(2016).

    [75] Li J F, Wang L L, Luo H Y et al. High power cascaded erbium doped fluoride fiber laser at room temperature[J]. IEEE Photonics Technology Letters, 28, 673-676(2016).

    [76] Liu J, Huang B, Tang P H et al. Volume Bragg grating based tunable continuous-wave and Bi2Te3Q-switched Er 3+∶ZBLAN fiber laser . [C]∥Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, California, United States. Washington, D.C.: OSA, AW1K, 7(2016).

    [77] Luo H Y, Li J, Xie J T et al. High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system[J]. Optics Express, 24, 29022-29032(2016).

    [78] Qin Z P, Xie G Q, Zhao C J et al. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber[J]. Optics Letters, 41, 56-59(2016).

    [79] Shen Y L, Wang Y S, Luan K P et al. Watt-level passively Q-switched heavily Er 3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror [J]. Scientific Reports, 6, 26659(2016).

    [80] Tang P H, Wu M, Wang Q K et al. 2.8- μm pulsed Er 3+∶ZBLAN fiber laser modulated by topological insulator [J]. IEEE Photonics Technology Letters, 28, 1573-1576(2016).

    [81] Zhang T, Feng G Y, Zhang H et al. Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8 μm using Fe 2+∶ZnSe saturable absorber mirror [J]. Optical Engineering, 55, 086106(2016).

    [82] Zhang T, Feng G Y, Zhang H et al. 2.78 μm passively Q-switched Er 3+-doped ZBLAN fiber laser based on PLD-Fe 2+∶ZnSe film [J]. Laser Physics Letters, 13, 075102(2016).

    [83] Zhu G W, Zhu X S, Wang F Q et al. Graphene mode-locked fiber laser at 2.8 μm[J]. IEEE Photonics Technology Letters, 28, 7-10(2016).

    [84] Aydin Y O, Fortin V, Maes F et al. High efficiency cascade fiber laser at 2.8 μm. [C]∥2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, June 25-29, 2017, Munich, Germany. Washington, D.C.: OSA, CJ_9_6(2017).

    [85] Aydın Y O, Fortin V, Maes F et al. Diode-pumped mid-infrared fiber laser with 50% slope efficiency[J]. Optica, 4, 235-238(2017).

    [86] Paradis P, Fortin V, Aydin Y O et al. All-fiber gain-switched laser at 2.8 microns. [C]∥Laser Congress 2017 (ASSL, LAC), October 1-5, 2017, Nagoya, Aichi Japan. Washington, D.C.: OSA, ATh4A, 5(2017).

    [87] Shen Y L, Wang Y S, Luan K P et al. Efficient wavelength-tunable gain-switching and gain-switched mode-locking operation of a heavily Er 3+-doped ZBLAN mid-infrared fiber laser [J]. IEEE Photonics Journal, 9, 1504510(2017).

    [88] Shen Y L, Zhou S Q, Chen H W et al. Output characteristics of Q-switched mid-infrared fiber laser with a mechanical chopper[J]. Acta Optica Sinica, 36, 0114002(2016).

    [89] Wei C, Luo H Y, Shi H X et al. Widely wavelength tunable gain-switched Er 3+-doped ZBLAN fiber laser around 2.8 μm [J]. Optics Express, 25, 8816-8827(2017).

    [90] Wei C, Zhang H, Shi H et al. Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range[J]. IEEE Photonics Technology Letters, 29, 881-884(2017).

    [91] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).

    [92] Aydın Y O, Fortin V, Vallée R et al. High power splice-less fiber laser at 2825 nm. [C]∥Conference on Lasers and Electro-Optics, May 13-18, 2018, San Jose, California, United States. Washington, D.C.: OSA, STh4K, 2(2018).

    [93] Lai X, Li J F, Luo H Y et al. High power passively Q-switched Er 3+-doped ZBLAN fiber laser at 2.8 μm based on a semiconductor saturable absorber mirror [J]. Laser Physics Letters, 15, 085109(2018).

    [94] Liu J, Wu M, Huang B et al. Widely wavelength-tunable mid-infrared fluoride fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0900507(2018). http://ieeexplore.ieee.org/document/7961266/

    [95] Ning S G, Feng G Y, Dai S Y et al. Mid-infrared Fe 2+∶ZnSe semiconductor saturable absorber mirror for passively Q-switched Er 3+-doped ZBLAN fiber laser [J]. AIP Advances, 8, 025121(2018).

    [96] Ning S G, Feng G Y, Zhang H et al. Fabrication of Fe 2+∶ZnSe nanocrystals and application for a passively Q-switched fiber laser [J]. Optical Materials Express, 8, 865-874(2018).

    [97] Paradis P, Fortin V, Aydin Y O et al. 10 W-level gain-switched all-fiber laser at 2.8 μm[J]. Optics Letters, 43, 3196-3199(2018).

    [98] Qin Z P, Xie G Q, Ma J G et al. 2.8 μm all-fiber Q-switched and mode-locked lasers with black phosphorus[J]. Photonics Research, 6, 1074-1078(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ181121000185cIeLhO

    [99] Xie G Q, Qin Z P. Mid-infrared ultrafast lasers based on two-dimension materials. [C]∥CLEO Pacific Rim Conference 2018, July 29-August 3, 2018, Hong Kong, China. Washington, D.C.: OSA, Th2G, 2(2018).

    [100] Zhang W, Feng G Y, Dai S Y et al. Q-switched mid-infrared Er 3+∶ZBLAN fiber laser based on gold nanocrystals [J]. Laser Physics, 28, 095104(2018).

    [101] Zhang W, Zhang H, Feng G Y et al. Gold nanobipyramids as a saturable absorber for passively Q-switched Er 3+∶ZBLAN fiber laser [J]. Optics & Laser Technology, 111, 30-34(2019).

    [102] Wetenkamp L. Efficient CW operation of a 2.9 μm Ho 3+-doped fluorozirconate fibre laser pumped at 640 nm [J]. Electronics Letters, 26, 883-884(1990).

    [103] Sumiyoshi T, Sekita H. Dual wavelength (3 μm and 2 μm) CW cascade oscillation of a holmium-doped double-clad fiber laser. [C]∥Conference Proceedings. LEOS '97. 10th Annual Meeting IEEE Lasers and Electro-Optics Society 1997 Annual Meeting, November 10-13, 1997, San Francisco, CA, USA. New York: IEEE, 534-535(1997).

    [104] Sumiyoshi T, Sekita H. Dual-wavelength continuous-wave cascade oscillation at 3 and 2 μm with a holmium-doped fluoride-glass fiber laser[J]. Optics Letters, 23, 1837-1839(1998).

    [105] Sumiyoshi T, Sekita H, Arai T et al. High-power continuous-wave 3- and 2- μm cascade Ho 3+∶ZBLAN fiber laser and its medical applications [J]. IEEE Journal of Selected Topics in Quantum Electronics, 5, 936-943(1999).

    [106] Naruse K, Arai T, Kawauchi S et al. Theoretical study of variable function (cutting/coagulating) laser surgical system using continuous-wave 3 μm, 2 μm cascade Ho 3+∶ZBLAN fiber laser [J]. Proceedings of SPIE, 4257, 334-340(2001).

    [107] Jackson S D. 210 mW 2.84 μm Ho 3+, Pr 3+-doped fluoride fibre laser [J]. Electronics Letters, 39, 772-773(2003).

    [108] Jackson S D. Singly Ho 3+-doped fluoride fibre laser operating at 2.92 μm [J]. Electronics Letters, 40, 1400-1401(2004).

    [109] Jackson S D. Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 μm[J]. Optics Letters, 29, 334-336(2004).

    [110] Qamar F Z, King T A, Jackson S D et al. Holmium, praseodymium-doped fluoride fiber laser operating near 2.87 μm and pumped with a Nd∶YAG laser[J]. Journal of Lightwave Technology, 23, 4315-4320(2005).

    [111] Jackson S D. Midinfrared holmium fiber lasers[J]. IEEE Journal of Quantum Electronics, 42, 187-191(2006).

    [112] Talavera D V, Mejía E B. Holmium-doped fluoride fiber laser at 2950 nm pumped at 1175 nm[J]. Laser Physics, 16, 436-440(2006).

    [113] Jackson S D, Bugge F, Erbert G. Directly diode-pumped holmium fiber lasers[J]. Optics Letters, 32, 2496-2498(2007).

    [114] Jackson S D. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm[J]. Optics Letters, 34, 2327-2329(2009).

    [115] Hudson D D, Anderson L, Magi E et al. Diode-pumped Ho 3+, Pr 3+-doped fluoride glass double clad fibre laser tuneable from 2.825 μm to 2.90 μm . [C]∥2011 IEEE Photonics Society Summer Topical Meeting Series, July 18-20, 2011, Montreal, QC, Canada. New York: IEEE, 87-88(2011).

    [116] Hudson D D, Magi E, Gomes L et al. 1 W diode-pumped tunable Ho 3+, Pr 3+-doped fluoride glass fibre laser [J]. Electronics Letters, 47, 985-986(2011).

    [117] Li J F, Hudson D D, Jackson S D. High-power diode-pumped fiber laser operating at 3 μm[J]. Optics Letters, 36, 3642-3644(2011).

    [118] Hu T, Hudson D D, Jackson S D. Actively Q-switched 2.9 μm Ho 3+Pr 3+-doped fluoride fiber laser [J]. Optics Letters, 37, 2145-2147(2012).

    [119] Li J F, Hu T, Jackson S D. Dual wavelength Q-switched cascade laser[J]. Optics Letters, 37, 2208-2210(2012).

    [120] Li J F, Hu T, Jackson S D. Q-switched induced gain switching of a two-transition cascade laser[J]. Optics Express, 20, 13123-13128(2012).

    [121] Li J F, Hudson D D, Jackson S D. Tuned cascade laser[J]. IEEE Photonics Technology Letters, 24, 1215-1217(2012).

    [122] Li J F, Hudson D D, Liu Y et al. Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror[J]. Optics Letters, 37, 3747-3749(2012).

    [123] Hu T, Jackson S D, Hudson D D. High peak power actively Q-switched Ho 3+, Pr 3+-co-doped fluoride fibre laser [J]. Electronics Letters, 49, 766-767(2013).

    [124] Hudson D D, Jackson S D. Fiber lasers open gateway to the mid-IR[J]. SPIE Newsroom(2013).

    [125] Hudson D D, Williams R J, Withford M J et al. Single-frequency fiber laser operating at 2.9 μm[J]. Optics Letters, 38, 2388-2390(2013).

    [126] Li J F, Yang Y, Hudson D D et al. A tunable Q-switched Ho 3+-doped fluoride fiber laser [J]. Laser Physics Letters, 10, 045107(2013).

    [127] Zhu G W, Zhu X S, Balakrishnan K et al. Fe 2+∶ZnSe and graphene Q-switched singly Ho 3+-doped ZBLAN fiber lasers at 3 μm [J]. Optical Materials Express, 3, 1365-1377(2013).

    [128] Hu T, Hudson D D, Jackson S D. Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class[J]. Optics Letters, 39, 2133-2136(2014).

    [129] Li J F, Luo H Y, He Y L et al. Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser[J]. Laser Physics Letters, 11, 065102(2014).

    [130] Crawford S, Hudson D D, Jackson S D. High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss[J]. IEEE Photonics Journal, 7, 1502309(2015).

    [131] Li J F, Luo H Y, Wang L L et al. Mid-infrared passively switched pulsed dual wavelength Ho 3+-doped fluoride fiber laser at 3 μm and 2 μm [J]. Scientific Reports, 5, 10770(2015).

    [132] Li J F, Luo H Y, Wang L L et al. Tunable Fe 2+∶ZnSe passively Q-switched Ho 3+-doped ZBLAN fiber laser around 3 μm [J]. Optics Express, 23, 22362-22370(2015).

    [133] Li J F, Luo H Y, Wang L L et al. 3-μm mid-infrared pulse generation using topological insulator as the saturable absorber[J]. Optics Letters, 40, 3659-3662(2015).

    [134] Antipov S, Hudson D D, Fuerbach A et al. High-power mid-infrared femtosecond fiber laser in the water vapor transmission window[J]. Optica, 3, 1373-1376(2016).

    [135] Li J F, Luo H Y, Zhai B et al. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers[J]. Scientific Reports, 6, 30361(2016).

    [136] Wei C, Luo H Y, Zhang H et al. Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber[J]. Laser Physics Letters, 13, 105108(2016).

    [137] Bharathan G, Woodward R I, Ams M et al. Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers[J]. Optics Express, 25, 30013-30019(2017).

    [138] Hudson D D, Antipov S, Fuerbach A et al. Ultrafast fiber lasers in the 3 μm water window. [C]∥Nonlinear Optics, July 17-21, 2017, Waikoloa, Hawaii, United States. Washington, D.C.: OSA, NTu3A, 4(2017).

    [139] Hudson D D, Antipov S, Li L Z et al. Octave-spanning supercontinuum in the mid-IR with a 3 μm ultrafast fiber laser. [C]∥Nonlinear Optics, July 17-21, 2017, Waikoloa, Hawaii, United States. Washington, D.C.: OSA, NTu3A, 3(2017).

    [140] Hudson D D, Antipov S, Li L Z et al. Toward all-fiber supercontinuum spanning the mid-infrared[J]. Optica, 4, 1163-1166(2017).

    [141] Luo H Y, Li J F, Zhu C et al. Cascaded gain-switching in the mid-infrared region[J]. Scientific Reports, 7, 16891(2017).

    [142] Wei C, Shi H X, Luo H Y et al. 34 nm-wavelength-tunable picosecond Ho 3+/Pr 3+-codoped ZBLAN fiber laser [J]. Optics Express, 25, 19170-19178(2017).

    [143] Woodward R I, Hudson D D, Fuerbach A et al. Generation of 70-fs pulses at 2.86 μm from a mid-infrared fiber laser[J]. Optics Letters, 42, 4893-4896(2017).

    [144] Woodward R I, Hudson D D, Fuerbach A et al. Mid-infrared few-cycle pulse generation with a Ho∶ZBLAN fibre laser. [C]∥Australian and New Zealand Conference on Optics and Photonics.[S.l.: S.n.], 115(2017).

    [145] Jia S J, Jia Z X, Yao C F et al. 2875 nm lasing from Ho 3+-doped fluoroindate glass fibers [J]. IEEE Photonics Technology Letters, 30, 323-326(2018).

    [146] Luo H Y, Li J F, Hai Y C et al. State-switchable and wavelength-tunable gain-switched mid-infrared fiber laser in the wavelength region around 2.94 μm[J]. Optics Express, 26, 63-79(2018).

    [147] Shi Y W, Li J F, Luo H Y et al. Low-threshold dual-waveband 3 μm and 2 μm pulse generation based on hybrid pumping. [C]∥CLEO Pacific Rim Conference 2018, July 29-August 3, 2018, Hong Kong, China. Washington, D.C.: OSA, F1A, 3(2018).

    [148] Tian X L, Luo H Y, Wei R F et al. An ultrabroadband mid-infrared pulsed optical switch employing solution-processed bismuth oxyselenide[J]. Advanced Materials, 30, 1801021(2018).

    [149] Woodward R I, Hudson D D, Fuerbach A et al. Few-cycle pulse generation from a 3 μm fiber laser. [C]∥Conference on Lasers and Electro-Optics, May 13-18, 2018, San Jose, California, United States. Washington, D.C.: OSA, STh4K, 1(2018).

    [150] Luo H Y, Kang Z, Gao Y et al. Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3 μm[J]. Optics Express, 27, 4886-4896(2019).

    [151] Majewski M R, Woodward R I, Jackson S D. Ultrafast mid-infrared fiber laser mode-locked using frequency-shifted feedback[J]. Optics Letters, 44, 1698-1701(2019).

    [152] Shi Y W, Li J F, Luo H Y et al. Gain-switched dual-waveband Ho 3+-doped fluoride fiber laser based on hybrid pumping [J]. IEEE Photonics Technology Letters, 31, 46-49(2019).

    [153] Jackson S D. Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser[J]. Applied Physics Letters, 83, 1316-1318(2003).

    [154] Tsang Y H. El-Taher A E, King T A, et al. Efficient 2.96 μm dysprosium-doped fluoride fibre laser pumped with a Nd∶YAG laser operating at 1.3 μm[J]. Optics Express, 14, 678-685(2006).

    [155] Tsang Y H. El-Taher A E. Efficient lasing at near 3 μm by a Dy-doped ZBLAN fiber laser pumped at ~1.1 μm by an Yb fiber laser[J]. Laser Physics Letters, 8, 818-822(2011).

    [156] Majewski M R, Jackson S D. Highly efficient mid-infrared dysprosium fiber laser[J]. Optics Letters, 41, 2173-2176(2016).

    [157] Majewski M R, Jackson S D. Tunable dysprosium laser[J]. Optics Letters, 41, 4496-4498(2016).

    [158] Majewski M R, Jackson S D. Efficient in-band pumped Dy∶ZBLAN mid-infrared fiber laser. [C]∥Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), September 5-8, 2016, Sydney, Australia. Washington, D.C.: OSA, AM2C, 2(2016).

    [159] Majewski M R, Jackson S D. Recent progress in 3 micron class dysprosium-doped fluoride fiber lasers[J]. Proceedings of SPIE, 10083, 1008317(2017).

    [160] Majewski M R, Woodward R I, Jackson S D. Near infrared pumped full gain bandwidth tunable 3 micron dysprosium fiber laser[J]. Proceedings of SPIE, 10512, 105120U(2018).

    [161] Majewski M R, Woodward R I, Jackson S D. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm[J]. Optics Letters, 43, 971-974(2018).

    [162] Woodward R I, Majewski M R, Bharathan G et al. Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency[J]. Optics Letters, 43, 1471-1474(2018).

    [163] Woodward R I, Majewski M R, Jackson S D. Mode-locked dysprosium fiber laser:picosecond pulse generation from 2.97 to 3.30 μm[J]. APL Photonics, 3, 116106(2018).

    [164] Woodward R I, Majewski M R, Jackson S D. Electronically tunable mid-infrared mode-locked dysprosium fiber laser with over 330 nm tunability[J]. Proceedings of SPIE, 10897, 108970R(2019).

    [165] Fortin V, Jobin F, Larose M et al. 10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm[J]. Optics Letters, 44, 491-494(2019).

    [166] Wang Y C, Jobin F, Duval S et al. Ultrafast Dy 3+∶fluoride fiber laser beyond 3 μm [J]. Optics Letters, 44, 395-398(2019).

    [167] Majewski M R, Woodward R I, Carreé J Y et al. Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber[J]. Optics Letters, 43, 1926-1929(2018).

    [168] Bagdasarov K S, Zhekov V I, Lobachev V A et al. Steady-state emission from a Y3Al5O12∶Er 3+laser (λ =2.94 μ, T=300°K) [J]. Soviet Journal of Quantum Electronics, 13, 262-263(1983).

    [169] Zhekov V I, Lobachev V A, Murina T M et al. Efficient cross-relaxation laser emitting at λ=2.94 μ[J]. Soviet Journal of Quantum Electronics, 13, 1235-1237(1983).

    [170] Pollack S A, Chang D B, Moise N L. Continuous wave and Q-switched infrared erbium laser[J]. Applied Physics Letters, 49, 1578-1580(1986).

    [171] Auzel F, Meichenin D, Poignant H. Laser cross-section and quantum yield of Er 3+ at 2.7 μm in a ZrF4-based fluoride glass [J]. Electronics Letters, 24, 909-910(1988).

    [172] Johnson L F, Guggenheim H J. Laser emission at 3 μ from Dy 3+in BaY2F8[J]. Applied Physics Letters, 23, 96-98(1973).

    [173] Alcock I P, Tropper A C, Ferguson A I et al. Q-switched operation of a neodymium-doped monomode fibre laser[J]. Electronics Letters, 22, 84-85(1986).

    [174] Alcock I P, Ferguson A I, Hanna D C et al. Mode-locking of a neodymium-doped monomode fibre laser[J]. Electronics Letters, 22, 268-269(1986).

    [175] Wetenkamp L, Frerichs C, West G F et al. Efficient CW operation of tunable fluorozirconate fibre lasers at wavelengths pumpable with semiconductor laser diodes[J]. Journal of Non-Crystalline Solids, 140, 19-24(1992).

    [176] Shi H X. The research on wavelength-tunable pulsed fiber lasers around 3 μm[D]. Chengdu: University of Electronic Science and Technology of China, 20-22(2018).

    [177] Kir'Yanov A V, Barmenkov Y O. Self-Q-switched ytterbium-doped all-fiber laser[J]. Laser Physics Letters, 3, 498-502(2006).

    [178] Luo Z Q, Ruan Q J, Zhong M et al. Compact self-Q-switched green upconversion Er∶ZBLAN all-fiber laser operating at 543.4 nm[J]. Optics Letters, 41, 2258-2261(2016).

    [179] Li W W, Wang H J, Du T J et al. Compact self-Q-switched, tunable mid-infrared all-fiber pulsed laser[J]. Optics Express, 26, 34497-34502(2018).

    Weiwei Li, Xiaojin Zhang, Hang Wang, Zhengqian Luo. Research Progress of Mid-Infrared Rare Earth Ion-Doped Fiber Lasers at 3 μm[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170605
    Download Citation