• Laser & Optoelectronics Progress
  • Vol. 56, Issue 17, 170605 (2019)
Weiwei Li, Xiaojin Zhang, Hang Wang, and Zhengqian Luo*
Author Affiliations
  • Department of Electronic Engineering, Xiamen University, Fujian, Xiamen 361005, China
  • show less
    DOI: 10.3788/LOP56.170605 Cite this Article Set citation alerts
    Weiwei Li, Xiaojin Zhang, Hang Wang, Zhengqian Luo. Research Progress of Mid-Infrared Rare Earth Ion-Doped Fiber Lasers at 3 μm[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170605 Copy Citation Text show less
    Simplified energy-level transition diagram of Er3+
    Fig. 1. Simplified energy-level transition diagram of Er3+
    Simplified energy-level transition diagram of Ho3+
    Fig. 2. Simplified energy-level transition diagram of Ho3+
    Simplified energy-level transition diagram of Dy3+
    Fig. 3. Simplified energy-level transition diagram of Dy3+
    2.8 μm pulsed all-fiber laser based on black phosphorus saturable absorber[98]
    Fig. 4. 2.8 μm pulsed all-fiber laser based on black phosphorus saturable absorber[98]
    3 μm mode-locked Ho3+/Pr3+ co-doped fiber laser based on NPR technique[134]. (a) Structure of laser; (b) optical spectra of 3 μm mode-locked fiber laser; (c) pulse train of 3 μm mode-locked fiber laser after autocorrelation
    Fig. 5. 3 μm mode-locked Ho3+/Pr3+ co-doped fiber laser based on NPR technique[134]. (a) Structure of laser; (b) optical spectra of 3 μm mode-locked fiber laser; (c) pulse train of 3 μm mode-locked fiber laser after autocorrelation
    Composition of 3 μm miniaturized wavelength-tunable mid-infrared fiber laser. (a) Photograph of laser; (b) structural diagram of laser; (c) photograph of fiber end-facet mirror M1; (d) microscopic image of fiber end-facet mirror M2; (e) optical transmission spectrum of fiber end-facet mirror
    Fig. 6. Composition of 3 μm miniaturized wavelength-tunable mid-infrared fiber laser. (a) Photograph of laser; (b) structural diagram of laser; (c) photograph of fiber end-facet mirror M1; (d) microscopic image of fiber end-facet mirror M2; (e) optical transmission spectrum of fiber end-facet mirror
    Structure and principle of loss-adjusting device. (a) Loss-adjusting device; (b) large loss; (c) moderate loss; (d) low loss
    Fig. 7. Structure and principle of loss-adjusting device. (a) Loss-adjusting device; (b) large loss; (c) moderate loss; (d) low loss
    Experimental results of 3 μm wavelength-tunable all-fiber laser under continuous light running. (a) Output optical spectrum of mid-infrared laser (Inset is zoom-in view of 3 mm laser spectrum); (b) wavelength-tunable spectra of 3 μm laser
    Fig. 8. Experimental results of 3 μm wavelength-tunable all-fiber laser under continuous light running. (a) Output optical spectrum of mid-infrared laser (Inset is zoom-in view of 3 mm laser spectrum); (b) wavelength-tunable spectra of 3 μm laser
    Characteristics of 3 μm self-Q-switching operation at pump power of 207.7 mW. (a) Output optical spectrum (inset: a zoom-in view of 3 μm laser spectrum); (b) pulse sequence (inset: single pulse envelope)
    Fig. 9. Characteristics of 3 μm self-Q-switching operation at pump power of 207.7 mW. (a) Output optical spectrum (inset: a zoom-in view of 3 μm laser spectrum); (b) pulse sequence (inset: single pulse envelope)
    Research on the 3 μm wavelength-tunable self-Q-switched fiber laser at a fixed pump power of 207.7 mW. (a) Wavelength-tunable spectra of 3 μm fiber laser; (b) pulse width, repetition rate, and average output power at different tunable wavelengths (inset: self-Q-switching pulse sequence at 2943 nm)
    Fig. 10. Research on the 3 μm wavelength-tunable self-Q-switched fiber laser at a fixed pump power of 207.7 mW. (a) Wavelength-tunable spectra of 3 μm fiber laser; (b) pulse width, repetition rate, and average output power at different tunable wavelengths (inset: self-Q-switching pulse sequence at 2943 nm)
    YearGain ionPumpwavelength /nmOutputpower /WSlopeefficiency /%Laserwavelength / μmReference
    1988Er3+476.5--2.7[7]
    1990Er3+792330×10-632.71-2.78[10]
    1995Er3+791158×10-322.62.71[21]
    1999Er3+/Pr3+7901.717.32.71[29]
    2004Er3+9763.5-2.8[39]
    2007Er3+975921.32.785[41]
    2009Er3+9752414.52.8[47]
    2015Er3+98030.5162.938×10-3[64]
    2018Er3+98041.622.92.824×10-3[91]
    1990Ho3+64012.6×10-34.42.83-2.95[102]
    1999Ho3+11501.430-[105]
    2004Ho3+11002.5292.86[109]
    2015Ho3+11507.2292.83×10-3-2.98×10-3[130]
    2003Dy3+11000.2754.52.9[153]
    2006Dy3+13000.18202.96[154]
    2018Dy3+28301.06733.15[162]
    2019Dy3+283010.1583.24[165]
    Table 1. Typical reports on improvement of output power of 3-μm fiber lasers
    YearGain ionAverage outputpower /mWMinimum pulseduration /nsLaserwavelength /nmQ-switchReference
    1994Er3+0.51002700AOM[15]
    2011Er3+12400902800AOM[52]
    2012Ho3+/Pr3+720782867AOM[118]
    2012Ho3+-3803005AOM[119]
    2012Ho3+-3503002AOM[120]
    2013Ho3+6853002970-3015AOM[126]
    2012Er3+3183702780Fe2+∶ZnSe[55]
    2013Er3+6229002783Grapnene[58]
    2015Er3+48511802779Black phosphorus[68]
    2015Ho3+327.413702979.9Bi2Te3[133]
    2015Ho3+33712302919.1-3004.2Fe2+∶ZnSe[132]
    2016Er3+420022902786.8SESAM[77]
    2016Er3+85613002791.2Bi2Te3[80]
    2016Er3+8227422780Fe2+∶ZnSe[82]
    2016Ho3+308.724102970.3Black phosphorus[135]
    2016Ho3+/Pr3+48.41730286.7WS2[136]
    2017Er3+51604002762.5-2852.5Fe2+∶ZnSe[90]
    2018Er3+2608802762-2824Bi2Te3[94]
    2019Er3+4856122780Gold nanobipyramids[101]
    2018Ho3+/Pr3+21.520002864.2Bi2O2Se[148]
    2019Ho3+/Pr3+30.821802834.5-2881.0LAR-GNRs[150]
    Table 2. Typical reports on 3 μm Q-switched fiber lasers
    YearGain ionAverage outputpower /mWPulseduration /fsLaserwavelength /nmMode-lockerReference
    2012Er3+51190002780Fe2+∶ZnSe[56]
    2012Ho3+/Pr3+132240002870SESAM[122]
    2014Er3+440600002797SESAM[59]
    2014Ho3+/Pr3+7060002859.5InAs[128]
    2015Er3+442072805NPR[63]
    2015Er3+2064972793NPR[65]
    2015Er3+1000250002780SESAM[69]
    2016Er3+20001602800-3600NPR[72]
    2016Er3+613420002783Black phosphorus[78]
    2016Er3+18420002784.5Graphene[83]
    2016Ho3+/Pr3+3271802900NPR[134]
    2016Ho3+/Pr3+87.886002866.7Black phosphorus[135]
    2017Ho3+/Pr3+127.7220002842.2-2876.2SESAM[142]
    2017Ho3+/Pr3+-702860NPR[143]
    2018Er3+6.2-2771.1Black phosphorus[98]
    2019Er3+-2702800NPR[71]
    2019Ho3+/Pr3+30047002860FSF[151]
    2019Dy3+120330002970-3300FSF[164]
    2019Dy3+2048283083NPR[166]
    Table 3. Typical reports on 3 μm mode-locked fiber lasers
    YearGain ionAverage outputpower /mWMinimum pulseduration /nsPulseenergy /μJLaserwavelength /nmReference
    2001Er3+-20019002700-2770[35]
    2011Er3+2000307-About 2800[51]
    2012Ho3+-2706.13002[120]
    2014Er3+4011804.2About 2800[61]
    2017Er3+4800230372825.4[86]
    2017Er3+110661.2-About 2800[87]
    2017Er3+119.415505.972699-2869.9[89]
    2017Ho3+262.148243.282928.5[141]
    2018Er3+11200170802826[97]
    2018Ho3+389.314904.872895.5-3000.5[146]
    2019Ho3+136.620022.732971.9[152]
    Table 4. Typical reports on 3 μm gain-switched fiber lasers
    YearGain ionTuningrangeOutputpower /mWWorkingprincpleOperationmodeReference
    1992Er3+160 nm (2.67-2.83 μm)26Diffraction gratingCW[175]
    2000Er3+110 nm (2.7-2.81 μm)30Diffraction gratingCW[34]
    2007Er3+100 nm (2.705-2.805 μm)2000Diffraction gratingCW[42]
    2008Er3+/Pr3+100 nm (2.7-2.81 μm)1000Diffraction gratingCW[43]
    2010Er3+130 nm (2.71-2.84 μm)11000Diffraction gratingCW[49]
    2016Er3+157 nm (2697-2854 nm)260Diffraction gratingCW[74]
    2016Er3+62 nm (2762-2824 nm)1240Diffraction gratingQ-switching[76]
    2017Er3+107.6 nm (2706.2-2813.8 nm)473.3Diffraction gratingGain-switching[89]
    2017Er3+100 nm (2.71-2.83 μm)110Diffraction gratingGain-switching[87]
    2017Er3+90 nm (2762.5-2852.5 nm)5160Diffraction gratingQ-switching[90]
    1990Ho3+120 nm (2.83-2.95 μm)12.6Diffraction gratingCW[102]
    2011Ho3+/Pr3+75 nm (2.825-2.9 μm)>1000Diffraction gratingCW[115]
    2012Ho3+66 nm (2.955-3.021 μm)518Diffraction gratingCW[121]
    2013Ho3+81 nm (2.95-3.031 μm)-Diffraction gratingQ-switching[126]
    2015Ho3+/Pr3+150 nm (2825-2975 nm)7200Diffraction gratingCW[130]
    2015Ho3+85 nm (2919.1-3004.2 nm)337Diffraction gratingQ-switching[132]
    2017Ho3+/Pr3+34 nm (2824.2-2976.2 nm)127.7Diffraction gratingMode-locking[142]
    2017Ho3+/Pr3+37 nm (2850-2887 nm)290Fiber Bragg gratingCW[137]
    2018Ho3+105 nm (2895.5-3000.5 nm)389.3Diffraction gratingGain-switching[146]
    2019Ho3+/Pr3+50 nm (2.83-2.88 μm)30.8Diffraction gratingQ-switching[150]
    2016Dy3+400 nm (2.95-3.35 μm)30Diffraction gratingCW[157]
    Table 5. Reports on 3 μm wavelength-tunable fiber lasers
    Weiwei Li, Xiaojin Zhang, Hang Wang, Zhengqian Luo. Research Progress of Mid-Infrared Rare Earth Ion-Doped Fiber Lasers at 3 μm[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170605
    Download Citation