• Photonics Research
  • Vol. 8, Issue 12, 1827 (2020)
Wei Lin1、2, Dihan Chen1, and Shih-Chi Chen1、*
Author Affiliations
  • 1Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
  • 2Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300071, China
  • show less
    DOI: 10.1364/PRJ.404334 Cite this Article Set citation alerts
    Wei Lin, Dihan Chen, Shih-Chi Chen. Emerging micro-additive manufacturing technologies enabled by novel optical methods[J]. Photonics Research, 2020, 8(12): 1827 Copy Citation Text show less
    References

    [1] S. Y. Chou, P. R. Krauss, P. J. Renstrom. Imprint of sub-25  nm vias and trenches in polymers. Appl. Phys. Lett., 67, 3114-3116(1995).

    [2] J. Chen, C. Gu, H. Lin, S. Chen. Soft mold-based hot embossing process for precision imprinting of optical components on nonplanar surfaces. Opt. Express, 23, 20977-20985(2015).

    [3] B. Berman. 3-D printing: the new industrial revolution. Bus. Horizons, 55, 155-162(2012).

    [4] J. W. Stansbury, M. J. Idacavage. 3D printing with polymers: challenges among expanding options and opportunities. Dent. Mater., 32, 54-64(2016).

    [5] C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Mgller, B. Richter, M. Wegener. 3D laser micro- and nanoprinting: challenges for chemistry. Angew. Chem., 56, 15828-15845(2017).

    [6] F. Rengier, A. Mehndiratta, H. V. Tenggkobligk, C. M. Zechmann, R. Unterhinninghofen, H. Kauczor, F. L. Giesel. 3D printing based on imaging data: review of medical applications. Int. J. Comput. Ass. Rad., 5, 335-341(2010).

    [7] G. H. Wu, S. H. Hsu. Review: polymeric-based 3D printing for tissue engineering. J. Med. Biol. Eng., 35, 285-292(2015).

    [8] J. Xing, M. Zheng, X. Duan. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem. Soc. Rev., 44, 5031-5039(2015).

    [9] R. D. Sochol, E. C. Sweet, C. C. Glick, S. Wu, C. Yang, M. A. Restaino, L. Lin. 3D printed microfluidics and microelectronics. Microelectron. Eng., 189, 52-68(2018).

    [10] J. A. Lewis, B. Y. Ahn. Device fabrication: three-dimensional printed electronics. Nature, 518, 42-43(2015).

    [11] Y. L. Kong, I. A. Tamargo, H. Kim, B. N. Johnson, M. K. Gupta, T. Koh, H. Chin, D. A. Steingart, B. P. Rand, M. C. Mcalpine. 3D printed quantum dot light-emitting diodes. Nano Lett., 14, 7017-7023(2014).

    [12] T. Gissibl, S. Thiele, A. M. Herkommer, H. Giessen. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics, 10, 554-560(2016).

    [13] B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. Mccordmaughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, J. W. Perry. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature, 398, 51-54(1999).

    [14] P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, C. Koos. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nat. Photonics, 12, 241-247(2018).

    [15] J. Luo, L. J. Gilbert, D. A. Bristow, R. G. Landers, J. T. Goldstein, A. M. Urbas, E. C. Kinzel. Additive manufacturing of glass for optical applications. Proc. SPIE, 9738, 97380Y(2016).

    [16] Y. AbouHashem, M. Dayal, S. Savanah, G. Štrkalj. The application of 3D printing in anatomy education. Med. Educ. Online, 20, 29847(2015).

    [17] C. Gosselin, R. Duballet, P. Roux, N. Gaudilliere, J. Dirrenberger, P. Morel. Large-scale 3D printing of ultra-high-performance concrete—a new processing route for architects and builders. Mater. Design, 100, 102-109(2016).

    [18] C. Yeh, Y. Chen. Critical success factors for adoption of 3D printing. Technol. Forecast. Soc., 132, 209-216(2018).

    [19] Grand View Research, “3D printing market size, share & trends analysis report by material, by component, by printer type, by technology, by software, by application, by vertical, and segment forecasts, –,” Market Research Report (), 2020-2027(2020).

    [20] M. Vaezi, H. Seitz, S. Yang. A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Technol., 67, 1721-1754(2013).

    [21] R. D. Sochol, E. Sweet, C. C. Glick, S. Venkatesh, A. Avetisyan, K. F. Ekman, A. Raulinaitis, A. Tsai, A. Wienkers, K. Korner, K. Hanson, A. Long, B. J. Hightower, G. Slatton, D. C. Burnett, T. L. Massey, K. Iwai, L. P. Lee, K. S. J. Pister, L. Lin. 3D printed microfluidic circuitry via multijet-based additive manufacturing. Lab Chip, 16, 668-678(2016).

    [22] S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, G. von Freymann. Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses. Adv. Mater., 18, 265-269(2006).

    [23] F. Klein, B. Richter, T. Striebel, C. M. Franz, G. von Freymann, M. Wegener, M. Bastmeyer. Two-component polymer scaffolds for controlled three-dimensional cell culture. Adv. Mater., 23, 1341-1345(2011).

    [24] J. J. Adams, E. B. Duoss, T. F. Malkowski, M. J. Motala, B. Y. Ahn, R. G. Nuzzo, J. T. Bernhard, J. A. Lewis. Conformal printing of electrically small antennas on three-dimensional surfaces. Adv. Mater., 23, 1335-1340(2011).

    [25] X. Zheng, H. Lee, T. H. Weisgraber, M. Shusteff, J. DeOtte, E. B. Duoss, J. D. Kuntz, M. M. Biener, Q. Ge, J. A. Jackson, S. O. Kucheyev, N. X. Fang, C. M. Spadaccini. Ultralight, ultrastiff mechanical metamaterials. Science, 344, 1373-1377(2014).

    [26] N. Zhou, C. Liu, J. A. Lewis, D. Ham. Gigahertz electromagnetic structures via direct ink writing for radio-frequency oscillator and transmitter applications. Adv. Mater., 29, 1605198(2017).

    [27] M. A. Jafari, W. Han, F. Mohammadi, A. Safari, S. C. Danforth, N. A. Langrana. A novel system for fused deposition of advanced multiple ceramics. Rapid Prototyping J., 6, 161-175(2000).

    [28] T. B. F. Woodfield, J. Malda, J. de Wijn, F. Péters, J. Riesle, C. A. Van Blitterswijk. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials, 25, 4149-4161(2004).

    [29] R. J. A. Allen, R. S. Trask. An experimental demonstration of effective curved layer fused filament fabrication utilising a parallel deposition robot. Addit. Manuf., 8, 78-87(2015).

    [30] J. Go, S. N. Schiffres, A. G. Stevens, A. JohnHart. Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design. Addit. Manuf., 16, 1-11(2017).

    [31] K. K. B. Hon, L. Li, I. M. Hutchings. Direct writing technology-advances and developments. CIRP Ann., 57, 601-620(2008).

    [32] G. M. Gratson, M. Xu, J. A. Lewis. Direct writing of three-dimensional webs. Nature, 428, 386(2004).

    [33] E. B. Duoss, T. H. Weisgraber, K. Hearon, C. Zhu, W. Small, T. R. Metz, J. J. Vericella, H. D. Barth, J. D. Kuntz, R. S. Maxwell, C. M. Spadaccini, T. S. Wilson. Three-dimensional printing of elastomeric, cellular architectures with negative stiffness. Adv. Funct. Mater., 24, 4905-4913(2014).

    [34] T. D. Ngo, A. Kashania, G. Imbalzano, K. T. Q. Nguyen, D. Hui. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composites Part B, 143, 172-196(2018).

    [35] D. J. Ryu, C. Sonn, D. H. Hong, K. B. Kwon, S. J. Park, H. Y. Ban, T. Y. Kwak, D. Lim, J. H. Wang. Titanium porous coating using 3D direct energy deposition (DED) printing for cementless TKA implants: does it induce chronic inflammation?. Materials, 13, 472(2020).

    [36] L. Hirt, A. Reiser, R. Spolenak, T. Zambelli. Additive manufacturing of metal structures at the micrometer scale. Adv. Mater., 29, 1604211(2017).

    [37] J. D. Fowlkes, R. Winkler, B. B. Lewis, A. Fernández-Pacheco, L. Skoric, D. Sanz-Hernández, M. G. Stanford, E. Mutunga, P. D. Rack, H. Plank. High-fidelity 3D-nanoprinting via focused electron beams: computer-aided design (3BID). ACS Appl. Nano Mater., 1, 1028-1041(2018).

    [38] J. Kechagias. An experimental investigation of the surface roughness of parts produced by LOM process. Rapid Prototyping J., 13, 17-22(2007).

    [39] D. X. Luong, A. K. Subramanian, G. A. Lopez Silva, J. Yoon, S. Cofer, K. Yang, P. S. Owuor, T. Wang, Z. Wang, J. Lou, P. M. Ajayan, J. M. Tour. Laminated object manufacturing of 3D-printed laser-induced graphene foams. Adv. Mater., 30, 1707416(2018).

    [40] A. Reiser, M. Linden, P. Rohner, A. Marchand, H. Galinski, A. S. Sologubenko, J. M. Wheeler, R. Zenobi, D. Poulikakos, R. Spolenak. Multi-metal electrohydrodynamic redox 3D printing at the submicron scale. Nat. Commun., 10, 1853(2019).

    [41] J. Schneider, P. Rohner, D. Thureja, M. Schmid, P. Galliker, D. Poulikakos. Electrohydrodynamic nano drip printing of high aspect ratio metal grid transparent electrodes. Adv. Funct. Mater., 26, 833-840(2016).

    [42] S. A. Khairallah, A. T. Anderson, A. M. Rubenchik, W. E. King. Laser powder-bed fusion additive manufacturing physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater., 108, 36-45(2016).

    [43] A. Basit, F. Fina, S. Gaisford, S. Gaisford, A. W. Basit. Powder bed fusion: the working process, current applications and opportunities. 3D Printing of Pharmaceuticals, 31, 81-105(2018).

    [44] S. Maruo, O. Nakamura, S. Kawata. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett., 22, 132-134(1997).

    [45] S. Kawata, H. B. Sun, T. Tanaka, K. Takada. Finer features for functional microdevices–micromachines can be created with higher resolution using two-photon absorption. Nature, 412, 697-698(2001).

    [46] T. Gissibl, S. Thiele, A. M. Herkommer, H. Giessen. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nat. Commun., 7, 11763(2016).

    [47] R. Raman, B. Bhaduri, M. Mir, A. Shkumatov, M. K. Lee, G. Popescu, H. Kong, R. Bashir. High-resolution projection microstereolithography for patterning of neovasculature. Adv. Health Mater., 5, 610-619(2016).

    [48] D. J. Mcgregor, S. H. Tawfick, W. P. King. Mechanical properties of hexagonal lattice structures fabricated using continuous liquid interface production additive manufacturing. Addit. Manuf., 25, 10-18(2019).

    [49] K. William, J. Maxwell, K. Larsson, M. Boman. Freeform fabrication of functional microsolenoids, electromagnets and helical springs using high pressure laser chemical vapour deposition. Proceedings of the 12th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 232-237(1999).

    [50] M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, M. Stuke. Laser rapid prototyping of photonic band-gap microstructures. Science, 275, 1284-1286(1997).

    [51] E. Saleh, P. Woolliams, B. Clarke, A. Gregory, S. Greedy, C. Smartt, R. D. Wildman, I. A. Ashcroft, R. J. M. Hague, P. Dickens, C. Tuck. 3D inkjet-printed UV-curable inks for multi-functional electromagnetic applications. Addit. Manuf., 13, 143-148(2017).

    [52] E. B. Duoss, M. Twardowski, J. A. Lewis. Sol-gel inks for direct-write assembly of functional oxides. Adv. Mater., 19, 3485-3489(2007).

    [53] Z. Gan, Y. Cao, R. A. Evans, M. Gu. Three-dimensional deep sub-diffraction optical beam lithography with 9  nm feature size. Nat. Commun., 4, 2061(2013).

    [54] V. Hahn, F. Mayer, M. Thiel, M. Wegener. 3-D laser nanoprinting. Opt. Photon. News, 30, 28-35(2019).

    [55] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [56] J. Fischer, M. Wegener. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photon. Rev., 7, 22-44(2013).

    [57] D. L. Forman, M. C. Cole, R. R. McLeod. Radical diffusion limits to photo inhibited super resolution lithography. Phys. Chem. Chem. Phys., 15, 14862-14867(2013).

    [58] E. Andrzejewska. Photo polymerization kinetics of multifunctional monomers. Prog. Polym. Sci., 26, 605-665(2001).

    [59] R. F. T. Stepto, J. I. Cail, D. J. R. Taylor. Polymer networks: principles of formation, structure and properties. Polimery Warsaw, 45, 455-464(2000).

    [60] E. Andrzejewska, M. B. Bogacki, M. Andrzejewski. Variations of rate coefficients and termination mechanism during the after-effects of a light-induced polymerization of a dimethacrylate monomer. Macromol. Theor. Simul., 10, 842-849(2001).

    [61] S. Zhu, A. Hamielec. Kinetics of polymeric network synthesis via free-radical mechanisms-polymerization and polymer modification. Makromolekulare Chemie. Macromolecular Symposia., 63, 135-182(1992).

    [62] O. George. Principles of Polymerization(2004).

    [63] X. Allonas, J. Lalevee, F. Morlet-Savary, J. P. Fouassier. Understanding the reactivity of photo initiating systems for photo polymerization. Polimery, 51, 491-498(2006).

    [64] G. W. Sluggett, P. F. Mcgarry, I. V. Koptyug, N. J. Turro. Laser flash photolysis and time-resolved ESR study of phosphinoyl radical structure and reactivity. J. Am. Chem. Soc., 118, 7367-7372(1996).

    [65] U. Kolczak, G. Rist, K. Dietliker, J. Wirz. Reaction mechanism of monoacyl- and bisacylphosphine oxide photoinitiators studied by 31P-, 13C-, and 1H-CIDNP and ESR. J. Am. Chem. Soc., 118, 6477-6489(1996).

    [66] M. Rumi, S. Barlow, J. Wang, J. W. Perry, S. R. Marder. Two-photon absorbing materials and two-photon-induced chemistry. Photoresponsive Polymers, 1-95(2008).

    [67] S. Maruo, K. Ikuta. Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization. Sens. Actuators A, 100, 70-76(2002).

    [68] J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. L. Kelly, K. Chen, R. K. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, J. M. Desimone. Continuous liquid interface production of 3D objects. Science, 347, 1349-1352(2015).

    [69] J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A. N. Unterreiner, M. Wegener. Three-dimensional multi-photon direct laser writing with variable repetition rate. Opt. Express, 21, 26244-26260(2013).

    [70] M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiūtė, R. Gadonas. Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers. Lith. J. Phys., 50, 201-207(2010).

    [71] I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, M. Farsari. Diffusion-assisted high-resolution direct femtosecond laser writing. ACS Nano, 6, 2302-2311(2012).

    [72] J. Zhang, P. Xiao. 3D printing of photopolymers. Polym. Chem., 9, 1530-1540(2018).

    [73] X. Fan, Y. Huang, X. Ding, N. Luo, C. Li, N. Zhao, S. Chen. Alignment-free liquid capsule pressure sensor for cardiovascular monitoring. Adv. Funct. Mater., 28, 1805045(2018).

    [74] H. Cui, R. Hensleigh, D. Yao, D. Maurya, P. Kumar, M. G. Kang, S. Priya, X. R. Zheng. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nat. Mater., 18, 234-241(2019).

    [75] A. Marino, C. Filippeschi, V. Mattoli, B. Mazzolai, G. Ciofani. Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization. Nanoscale, 7, 2841-2850(2015).

    [76] M. T. Gale, M. Rossi, J. Pedersen, H. Schuetz. Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists. Opt. Eng., 33, 3556-3566(1994).

    [77] A. Selimis, V. Mironov, M. Farsari. Direct laser writing: principles and materials for scaffold 3D printing. Microelectron. Eng., 132, 83-89(2015).

    [78] M. Malinauskas, P. Danilevičius, S. Juodkazis. Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses. Opt. Express, 19, 5602-5610(2011).

    [79] B. W. Pearre, C. Michas, J. Tsang, T. J. Gardner, T. M. Otchy. Fast micron-scale 3D printing with a resonant-scanning two-photon microscope. Addit. Manuf., 30, 100887(2019).

    [80] K. Obata, A. Eltamer, L. Koch, U. Hinze, B. N. Chichkov. High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP). Light Sci. Appl., 2, e116(2013).

    [81] W. Chu, Y. Tan, P. Wang, J. Xu, W. Li, J. Qi, Y. Cheng. Centimeter-height 3D printing with femtosecond laser two-photon polymerization. Adv. Mater. Technol., 3, 1700396(2018).

    [82] Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, K. Hirao. Arbitrary micropatterning method in femtosecond laser micro processing using diffractive optical elements. Opt. Express, 12, 1908-1915(2004).

    [83] T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, H. Misawa. Multi photon fabrication of periodic structures by multi beam interference of femtosecond pulses. Appl. Phys. Lett., 82, 2758-2760(2003).

    [84] L. Kelemen, S. Valkai, P. Ormos. Parallel photo polymerisation with complex light patterns generated by diffractive optical elements. Opt. Express, 15, 14488-14497(2007).

    [85] K. Obata, J. Koch, U. Hinze, B. N. Chichkov. Multi-focus two-photon polymerization technique based on individually controlled phase modulation. Opt. Express, 18, 17193-17200(2010).

    [86] X. Chen, Y. Song, W. Zhang, M. Sulaman, S. Zhao, B. Guo, Q. Hao, L. Li. Imaging method based on the combination of microlens arrays and aperture arrays. Appl. Opt., 57, 5392-5398(2018).

    [87] J. Kato, N. Takeyasu, Y. Adachi, H. Sun, S. Kawata. Multiple-spot parallel processing for laser micro nanofabrication. Appl. Phys. Lett., 86, 044102(2005).

    [88] X. Dong, Z. Zhao, X. Duan. Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing. Appl. Phys. Lett., 91, 124103(2007).

    [89] S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, B. N. Chichkov. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomed. Opt. Express, 2, 3167-3178(2011).

    [90] V. Hahn, P. Kiefer, T. Frenzel, J. Qu, E. Blasco, C. Barnerkowollik, M. Wegener. Rapid assembly of small materials building blocks (voxels) into large functional 3D metamaterials. Adv. Funct. Mater., 30, 1907795(2020).

    [91] T. Bückmann, M. Thiel, M. Kadic, R. Schittny, M. Wegener. An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat. Commun., 5, 4130(2014).

    [92] L. Yang, A. Eltamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, B. N. Chichkov. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator. Opt. Laser Eng., 70, 26-32(2015).

    [93] T. Baldacchini, S. Snider, R. Zadoyan. Two-photon polymerization with variable repetition rate bursts of femtosecond laser pulses. Opt. Express, 20, 29890-29899(2012).

    [94] G. Vizsnyiczai, L. Kelemen, P. Ormos. Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms. Opt. Express, 22, 24217-24223(2014).

    [95] M. Manousidaki, D. G. Papazoglou, M. Farsari, S. Tzortzakis. 3D holographic light shaping for advanced multiphoton polymerization. Opt. Lett., 45, 85-88(2020).

    [96] C. Gu, Y. Chang, D. Zhang, J. Cheng, S. Chen. Femtosecond laser pulse shaping at megahertz rate via a digital micromirror device. Opt. Lett., 40, 4018-4021(2015).

    [97] J. Cheng, C. Gu, D. Zhang, D. Wang, S. Chen. Ultrafast axial scanning for two-photon microscopy via a digital micromirror device and binary holography. Opt. Lett., 41, 1451-1454(2016).

    [98] M. Ren, J. Chen, D. Chen, S. Chen. Aberration-free 3D imaging via DMD-based two-photon microscopy and sensorless adaptive optics. Opt. Lett., 45, 2656-2659(2020).

    [99] D. Wang, J. F. C. Loo, W. Lin, Q. Geng, E. K. S. Ngan, S. K. Kong, Y. Yam, S. Chen, H. P. Ho. Development of a sensitive DMD-based 2-D SPR sensor array using single-point detection strategy for multiple aptamer screening. Sens. Actuators B, 305, 127240(2020).

    [100] D. Wang, C. Wen, Y. Chang, W. Lin, S. Chen. Ultrafast laser-enabled 3D metal printing: a solution to fabricate arbitrary submicron metal structures. Precis. Eng., 52, 106-111(2018).

    [101] C. Wen, F. Feng, M. Ren, M. Somek, N. Zhao, S. Chen. Spatially-resolved random-access pump-probe microscopy based on binary holography. Opt. Lett., 44, 4083-4086(2019).

    [102] C. Wen, M. Ren, F. Feng, W. Chen, S. Chen. Compressive sensing for fast 3-D and random-access two-photon microscopy. Opt. Lett., 44, 4343-4346(2019).

    [103] Q. Geng, C. Gu, J. Cheng, S. Chen. Digital micromirror device-based two-photon microscopy for three-dimensional and random-access imaging. Optica, 4, 674-677(2017).

    [104] Q. Geng, D. Wang, P. Chen, S. Chen. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun., 10, 2179(2019).

    [105] A. Bertsch, S. Zissi, J. Y. Jézéquel, S. Corbel, J. C. Andre. Microstereophotolithography using a liquid crystal display as dynamic mask-generator. Microsyst. Technol., 3, 42-47(1997).

    [106] C. Sun, N. Fang, D. M. Wu, X. Zhang. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sens. Actuators A, 121, 113-120(2005).

    [107] J. Choi, R. B. Wicker, S. Lee, K. H. Choi, C. Ha, I. Chung. Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J. Mater. Process. Technol., 209, 5494-5503(2009).

    [108] H. Kim, S. K. Moon, M. Seo. Hybrid layering scanning-projection micro-stereolithography for fabrication of conical microlens array and hollow microneedle array. Microelectron. Eng., 153, 15-19(2016).

    [109] Q. Wang, J. A. Jackson, Q. Ge, J. B. Hopkins, C. M. Spadaccini, N. X. Fang. Lightweight mechanical metamaterials with tunable negative thermal expansion. Phys. Rev. Lett., 117, 175901(2016).

    [110] Q. Mu, L. Wang, C. K. Dunn, X. Kuang, F. Duan, Z. Zhang, H. J. Qi, T. Wang. Digital light processing 3D printing of conductive complex structures. Addit. Manuf., 18, 74-83(2017).

    [111] X. Song, Y. Chen, T. W. Lee, S. Wu, L. Cheng. Ceramic fabrication using mask-image-projection-based stereolithography integrated with tape-casting. J. Manuf. Proc., 20, 456-464(2015).

    [112] Y. Y. C. Choong, S. Maleksaeedi, H. Eng, P.-C. Su, J. Wei. Curing characteristics of shape memory polymers in 3D projection and laser stereolithography. Virtual Phys. Prototyp., 12, 77-84(2017).

    [113] D. Han, C. Farino, C. Yang, T. Scott, D. Browe, W. Choi, J. W. Freeman, H. Lee. Soft robotic manipulation and locomotion with a 3D printed electroactive hydrogel. ACS Appl. Mater. Interfaces, 10, 17512-17518(2018).

    [114] Y. Yang, Z. Chen, X. Song, B. Zhu, T. K. Hsiai, P. Wu, R. Xiong, J. Shi, Y. Chen, Q. Zhou, K. K. Shung. Three dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy, 22, 414-421(2016).

    [115] D. Han, C. Yang, N. X. Fang, H. Lee. Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control. Addit. Manuf., 27, 606-615(2019).

    [116] D. A. Walker, J. L. Hedrick, C. A. Mirkin. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science, 366, 360-364(2019).

    [117] G. Zhu, J. V. Howe, M. Durst, W. Zipfel, C. Xu. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express, 13, 2153-2159(2005).

    [118] D. Oron, E. Tal, Y. Silberberg. Scanningless depth-resolved microscopy. Opt. Express, 13, 1468-1476(2005).

    [119] J. N. Yih, Y. Y. Hu, Y. D. Sie, L. C. Cheng, C. H. Lien, S. J. Chen. Temporal focusing based multiphoton excitation microscopy via digital micromirror device. Opt. Lett., 39, 3134-3137(2014).

    [120] Y. Meng, W. Lin, C. Li, S. Chen. Fast two-snapshot structured illumination for temporal focusing microscopy with enhanced axial resolution. Opt. Express, 25, 23109-23121(2017).

    [121] C. Gu, D. Zhang, D. Wang, Y. Yam, C. Li, S. Chen. Parallel femtosecond laser light sheet micro-manufacturing based on temporal focusing. Precis. Eng., 50, 198-203(2017).

    [122] Y. Li, L. Cheng, C. Chang, C. Lien, P. J. Campagnola, S. J. Chen. Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation. Opt. Express, 20, 19030-19038(2012).

    [123] S. K. Saha, D. Wang, V. H. Nguyen, Y. Chang, J. S. Oakdale, S. Chen. Scalable submicrometer additive manufacturing. Science, 366, 105-109(2019).

    [124] S. K. Saha, S. Chen. Comment on ‘rapid assembly of small materials building blocks (voxels) into large functional 3D metamaterials’. Adv. Funct. Mater., 30, 2001060(2020).

    [125] M. Shusteff, A. E. M. Browar, B. Kelly, J. Henriksson, T. H. Weisgraber, R. M. Panas, N. X. Fang, C. M. Spadaccini. One-step volumetric additive manufacturing of complex polymer structures. Sci. Adv., 3, 5496(2017).

    [126] B. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C. M. Spadaccini, H. Taylor. Volumetric additive manufacturing via tomographic reconstruction. Science, 363, 1075-1079(2019).

    [127] D. J. Brenner, E. J. Hall. Computed tomography—an increasing source of radiation exposure. New Engl. J. Med., 357, 2277-2284(2007).

    [128] D. Loterie, P. Delrot, C. Moser. High-resolution tomographic volumetric additive manufacturing. Nat. Commun., 11, 852(2020).

    [129] J. S. Oakdale, R. F. Smith, J. Forien, W. L. Smith, S. Ali, L. B. B. Aji, T. M. Willey, J. Ye, A. W. V. Buuren, M. A. Worthington, S. T. Prisbrey, H. Park, P. Amendt, T. F. Baumann, J. Biener. Direct laser writing of low-density interdigitated foams for plasma drive shaping. Adv. Funct. Mater., 27, 1702425(2017).

    [130] L. R. Meza, S. Das, J. R. Greer. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science, 345, 1322-1326(2014).

    [131] L. A. Shaw, S. Chizari, M. Shusteff, H. Naghsh-Nilchi, D. Di Carlo, J. B. Hopkins. Scanning two-photon continuous flow lithography for synthesis of high-resolution 3D microparticles. Opt. Express, 26, 13543-13548(2018).

    [132] M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, S. Juodkazis. Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses. Opt. Express, 18, 10209-10221(2010).

    [133] X. Zheng, J. R. Deotte, M. P. Alonso, G. R. Farquar, T. H. Weisgraber, S. Gemberling, H. Lee, N. X. Fang, C. M. Spadaccini. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Rev. Sci. Instrum., 83, 125001(2012).

    [134] M. P. D. Beer, H. L. V. D. Laan, M. A. Cole, R. J. Whelan, M. A. Burns, T. F. Scott. Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning. Sci. Adv., 5, eaau8723(2019).

    [135] A. Ovsianikov, J. Viertl, B. N. Chichkov, M. Oubaha, B. D. Maccraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis. Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano, 2, 2257-2262(2008).

    [136] T. Buckmann, N. Stenger, M. Kadic, J. Kaschke, A. Frolich, T. Kennerknecht, C. Eberl, M. Thiel, M. Wegener. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater., 24, 2710-2714(2012).

    [137] R. Batchelor, T. Messer, M. Hippler, M. Wegener, C. Barnerkowollik, E. Blasco. Two in one: light as a tool for 3D printing and erasing at the microscale. Adv. Mater., 31, 1904085(2019).

    [138] J. Fischer, M. Wegener. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy. Opt. Mater. Express, 1, 614-624(2011).

    [139] R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, T. A. Klar. 120  nm resolution and 55 nm structure size in STED-lithography. Opt. Express, 21, 10831-10840(2013).

    [140] J. Fischer, J. B. Mueller, A. S. Quick, J. Kaschke, C. Barnerkowollik, M. Wegener. Exploring the mechanisms in STED-enhanced direct laser writing. Adv. Opt. Mater., 3, 221-232(2015).

    [141] J. Kaschke, M. Wegener. Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography. Opt. Lett., 40, 3986-3989(2015).

    [142] J. Fischer, G. V. Freymann, M. Wegener. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv. Mater., 22, 3578-3582(2010).

    [143] P. Muller, R. Muller, L. Hammer, C. Barnerkowollik, M. Wegener, E. Blasco. STED-inspired laser lithography based on photoswitchable spirothiopyran moieties. Chem. Mater., 31, 1966-1972(2019).

    [144] H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, X. Zhao. Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography. RSC Adv., 8, 20117-20123(2018).

    [145] L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, M. Malinauskas. Mesoscale laser 3D printing. Opt. Express, 27, 15205-15221(2019).

    [146] L. Jonušauskas, T. Baravykas, D. Andrijec, T. Gadišauskas, V. Purlys. Stitchless support-free 3D printing of free-form micromechanical structures with feature size on-demand. Sci. Rep., 9, 17533(2019).

    [147] S. K. Saha, C. Divin, J. Cuadra, R. M. Panas. Effect of proximity of features on the damage threshold during submicron additive manufacturing via two-photon polymerization. J. Micro Nano-Manuf., 5, 031002(2017).

    [148] D. Yang, L. Liu, Q. Gong, Y. Li. Rapid two-photon polymerization of an arbitrary 3D microstructure with 3D focal field engineering. Macromol. Rapid Commun., 40, 1900041(2019).

    [149] M. J. Beauchamp, H. Gong, A. T. Woolley, G. P. Nordin. 3D printed microfluidic features using dose control in X, Y, and Z dimensions. Micromachines, 9, 326(2018).

    [150] X. Wan, R. Menon. Proximity-effect correction for 3D single-photon optical lithography. Appl. Opt., 55, A1-A7(2016).

    [151] T. Stichel, B. Hecht, S. Steenhusen, R. Houbertz, G. Sextl. Two-photon polymerization setup enables experimental mapping and correction of spherical aberrations for improved macroscopic structure fabrication. Opt. Lett., 41, 4269-4272(2016).

    [152] Y. Fujishiro, T. Furukawa, S. Maruo. Simple autofocusing method by image processing using transmission images for large-scale two-photon lithography. Opt. Express, 28, 12342-12351(2020).

    [153] L. Bauch, S. Gruss, A. Teipel, H. Froehlich. Method for detecting positioning errors of circuit patterns during the transfer by means of a mask into layers of a substrate of a semiconductor wafer(2005).

    Wei Lin, Dihan Chen, Shih-Chi Chen. Emerging micro-additive manufacturing technologies enabled by novel optical methods[J]. Photonics Research, 2020, 8(12): 1827
    Download Citation