[1] Lei H W, Wang H, Yang X et al. Analysis and progress of terahertz techniques applied in space science[J]. Space Electronic Technology, 14, 1-7, 12(2017).
[2] Wang S W, Lu Z J, Li W et al. 26.8-m THz wireless transmission of probabilistic shaping 16-QAM-OFDM signals[J]. APL Photonics, 5, 056105(2020).
[4] Li W. High-speed Photonic Terahertz Wireless Communication System Assisted by Probabilistic Shaping[D](2020).
[5] Kukutsu N, Hirata A, Kosugi T et al. 10-Gbit/s wireless transmission systems using 120-GHz-band photodiode and MMIC technologies[C], 1-4(2009).
[6] Kanno A, Dat P T, Sekine N et al. Seamless fiber-wireless bridge in the millimeter- and terahertz-wave bands[J]. Journal of Lightwave Technology, 34, 4794-4801(2016).
[7] Zhang L, Pang X D, Jia S et al. Beyond 100 Gb/s optoelectronic terahertz communications: Key technologies and directions[J]. IEEE Communications Magazine, 58, 34-40(2020).
[8] Shams H, Fice M J, Balakier K et al. Photonic generation for multichannel THz wireless communication[J]. Optics Express, 22, 23465-23472(2014).
[9] Yu X, Jia S, Hu H et al. 160 Gbit/s photonics wireless transmission in the 300-500 GHz band[J]. APL Photonics, 1, 081301(2016).
[10] Yu J G, Li K L, Chen Y X et al. Terahertz-wave generation based on optical frequency comb and single Mach-Zehnder modulator[J]. IEEE Photonics Journal, 12, 1-8(2020).
[11] Ishibashi T, Ito H. Uni-traveling carrier photodiodes: Development and prospects[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 1-6(2022).
[12] Xiong B, Chao E F, Luo Y et al. Research on ultra-wideband and high saturation power uni-traveling carrier photodetectors[J]. Infrared and Laser Engineering, 50, 20211052(2021).
[13] Wang C, Zhang M, Chen X et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 562, 101-104(2018).
[14] He M B, Xu M Y, Ren Y X et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond[J]. Nature Photonics, 13, 359-364(2019).
[15] Li K, Liu S H, Thomson D J et al. Electronic-photonic convergence for silicon photonics transmitters beyond 100 Gbps on-off keying[J]. Optica, 7, 1514-1516(2020).
[16] Lu G W, Hong J X, Qiu F et al. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s-1 for energy-efficient datacentres and harsh-environment applications[J]. Nature Communications, 11, 4224(2020).
[17] Koch U, Uhl C, Hettrich H et al. A monolithic bipolar CMOS electronic-plasmonic high-speed transmitter[J]. Nature Electronics, 3, 338-345(2020).
[18] Mohammad A W, Shams H, Balakier K et al. 5 Gbps wireless transmission link with an optically pumped uni-traveling carrier photodiode mixer at the receiver[J]. Optics Express, 26, 2884-2890(2018).
[19] Mohammad A W, Shams H, Liu C P et al. 60-GHz transmission link using uni-traveling carrier photodiodes at the transmitter and the receiver[J]. Journal of Lightwave Technology, 36, 4507-4513(2018).
[20] Harter T, Ummethala S, Blaicher M et al. Wireless THz link with optoelectronic transmitter and receiver[J]. Optica, 6, 1063-1070(2019).
[21] Haffner C, Heni W, Fedoryshyn Y et al. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale[J]. Nature Photonics, 9, 525-528(2015).
[22] Haffner C, Chelladurai D, Fedoryshyn Y et al. Low-loss plasmon-assisted electro-optic modulator[J]. Nature, 556, 483-486(2018).
[23] Ummethala S, Harter T, Koehnle K et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator[J]. Nature Photonics, 13, 519-524(2019).
[24] Koenig S, Lopez-Diaz D, Antes J et al. Wireless sub-THz communication system with high data rate[J]. Nature Photonics, 7, 977-981(2013).
[25] Shams H, Shao T, Fice M J et al. 100 Gb/s multicarrier THz wireless transmission system with high frequency stability based on a gain-switched laser comb source[J]. IEEE Photonics Journal, 7, 1-11(2015).
[26] Yu X B, Asif R, Piels M et al. 60 Gbit/s 400 GHz wireless transmission[C], 4-6(2015).
[27] Li X Y, Yu J J, Xiao J N et al. W-band PDM-QPSK vector signal generation by MZM-based photonic frequency octupling and precoding[J]. IEEE Photonics Journal, 7, 1-6(2015).
[28] Yu J J, Li X Y, Zhang J W et al. 432-Gb/s PDM-16QAM signal wireless delivery at W-band using optical and antenna polarization multiplexing[C], 1-3(2014).
[29] Wang K H, Yu J J. Transmission of 51.2 Gb/s 16 QAM single carrier signal in a MIMO radio-over-fiber system at W-band[J]. Microwave and Optical Technology Letters, 59, 2870-2874(2017).
[30] Akyildiz I F, Jornet J M, Han C. TeraNets: Ultra-broadband communication networks in the terahertz band[J]. IEEE Wireless Communications, 21, 130-135(2014).
[31] Oshima N, Hashimoto K, Suzuki S et al. Wireless data transmission of 34 Gbit/s at a 500-GHz range using resonant-tunnelling-diode terahertz oscillator[J]. Electronics Letters, 52, 1897-1898(2016).
[32] Han S F, Chih-lin I, Xu Z K et al. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G[J]. IEEE Communications Magazine, 53, 186-194(2015).
[33] Li X Y, Yu J J, Chi N et al. Antenna polarization diversity for high-speed polarization multiplexing wireless signal delivery at W-band[J]. Optics Letters, 39, 1169-1172(2014).
[34] Oshima N, Hashimoto K, Suzuki S et al. Terahertz wireless data transmission with frequency and polarization division multiplexing using resonant-tunneling-diode oscillators[J]. IEEE Transactions on Terahertz Science and Technology, 7, 593-598(2017).
[35] Shu C, Hu S Q, Yao Y et al. A high-gain antenna with polarization-division multiplexing for terahertz wireless communications[C], 1-2(2018).
[36] Li X Y, Yu J J, Wang K H et al. Bidirectional delivery of 54-Gbps 8QAM W-band signal and 32-Gbps 16QAM K-band signal over 20-km SMF-28 and 2500-m wireless distance[C], 1-3(2017).
[37] Li X Y, Yu J J, Wang K H et al. 120 Gb/s wireless terahertz-wave signal delivery by 375 GHz-500 GHz multi-carrier in a 2 × 2 MIMO system[J]. Journal of Lightwave Technology, 37, 606-611(2019).
[38] Zhou H B, Su X Z, Minoofar A et al. Utilizing multiplexing of structured THz beams carrying orbital-angular-momentum for high-capacity communications[J]. Optics Express, 30, 25418-25432(2022).
[39] Li X Y, Yu J J, Chang G K. Photonics-aided millimeter-wave technologies for extreme mobile broadband communications in 5G[J]. Journal of Lightwave Technology, 38, 366-378(2020).
[40] Wang K H, Li X Y, Kong M et al. Probabilistically shaped 16QAM signal transmission in a photonics-aided wireless terahertz-wave system[C], 1-3(2018).
[41] Li X Y, Yu J J, Zhao L et al. 1-Tb/s millimeter-wave signal wireless delivery at D-band[J]. Journal of Lightwave Technology, 37, 196-204(2019).
[42] Jia S, Zhang L, Wang S W et al. 2×300 Gbit/s line rate PS-64QAM-OFDM THz photonic-wireless transmission[J]. Journal of Lightwave Technology, 38, 4715-4721(2020).