• Chinese Journal of Quantum Electronics
  • Vol. 40, Issue 4, 423 (2023)
LI Xiaojun*, WANG Di, and GONG Jingwen
Author Affiliations
  • National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology-Xi'an,Xi'an 710100, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2023.04.001 Cite this Article
    Xiaojun LI, Di WANG, Jingwen GONG. Research progress of photonics⁃assisted terahertz communications[J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 423 Copy Citation Text show less
    Schematic diagram of photonics-assisted terahertz wireless communication system
    Fig. 1. Schematic diagram of photonics-assisted terahertz wireless communication system
    THz signal with multi-modulation format generation scheme based on electro-optical modulation
    Fig. 2. THz signal with multi-modulation format generation scheme based on electro-optical modulation
    Several new high-speed integrated electro-optical modulators. (a) Integrated lithium niobate electro-optic modulator[13];(b) Hybrid silicon and lithium niobate Mach⁃Zehnder modulators[14]; (c) U-shaped silicon photonics carrier depletion modulator[15]; (d) Silicon-polymer hybrid modulator[16]; (e) Ultra-compact silicon-electronic plasmonic high-speed modulator [17]
    Fig. 3. Several new high-speed integrated electro-optical modulators. (a) Integrated lithium niobate electro-optic modulator[13];(b) Hybrid silicon and lithium niobate Mach⁃Zehnder modulators[14]; (c) U-shaped silicon photonics carrier depletion modulator[15]; (d) Silicon-polymer hybrid modulator[16]; (e) Ultra-compact silicon-electronic plasmonic high-speed modulator [17]
    Photonics-assisted THz heterodyne receiving technology. (a) Mixing based on UTC-PD[18]; (b) Mixing based on photoconductor[20]; (c) Electro-optical modulation based on POH modulator[23]
    Fig. 4. Photonics-assisted THz heterodyne receiving technology. (a) Mixing based on UTC-PD[18]; (b) Mixing based on photoconductor[20]; (c) Electro-optical modulation based on POH modulator[23]
    Typical experimental results of terahertz wireless communication system based on optical wavelength division multiplexing technology[24]
    Fig. 5. Typical experimental results of terahertz wireless communication system based on optical wavelength division multiplexing technology[24]
    W-band wireless signal transmission system based on PDM, APM and MIMO
    Fig. 6. W-band wireless signal transmission system based on PDM, APM and MIMO
    Wireless signal transmission system based on WDM, PDM, APM and MIMO [36]
    Fig. 7. Wireless signal transmission system based on WDM, PDM, APM and MIMO [36]
    Probability distribution diagram of signal after probability constellation shaping [39]
    Fig. 8. Probability distribution diagram of signal after probability constellation shaping [39]
    序号工艺技术技术指标优点缺点参考文献
    1绝缘体上铌酸锂(LNOI)+马赫曾德尔干涉仪(MZI)结构

    当臂长为20 mm时, 3 dB带宽为40 GHz, 半波电压为1.5 V, 芯片损耗小于0.5 dB, 消光比为30 dB, 调制速率210 Gbit/s (8ASK)。

    当臂长为5 mm时, 3 dB带宽为100 GHz, 半波电压为4.4 V

    超高速调制、低驱动电压、低损耗、高消光比与标准CMOS工艺不兼容[13]
    2绝缘体上硅(SOI)+薄膜铌酸锂+混合集成+MZI结构当臂长为5 mm时, 3 dB带宽大于70 GHz, 半波电压为5.1 V, 总插入损耗为2.5 dB, 消光比大于40 dB, 调制速率为112 Gbit/s (PAM4)[14]
    3U型结构+耗尽型硅基调制器调制效率(半波电压与长度乘积)1.5 V·cm, 芯片损耗为6.9 dB, 臂长2.47 mm, 调制速率为112 Gbit/s (OOK)尺寸小、与标准CMOS工艺兼容硅光调制器的非线性可能会导致高级调制格式时出现信号失真[15]
    4SOI+聚合物混合集成+MZI结构3 dB带宽为68 GHz, 半波电压为1.8 V, 波导传输损耗0.22 dB/mm, 长度8 mm, 调制效率110 Gbit/s (OOK), 200 Gbit/s (PAM4)大带宽、低驱动电压、低损耗与标准CMOS工艺不兼容[16]
    5SOI+等离子体混合集成+MZI结构调制效率(半波电压与长度积)为240 V·μm, 插入损耗为27 dB, 消光比为10 dB, 调制速率为100 Gbit/s (OOK)超大带宽、尺寸小驱动电压较大、损耗大、与标准CMOS工艺不兼容[17]
    Table 1. Performance comparison of several new high-speed integrated electro-optical modulators
    Xiaojun LI, Di WANG, Jingwen GONG. Research progress of photonics⁃assisted terahertz communications[J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 423
    Download Citation