• Acta Optica Sinica
  • Vol. 41, Issue 1, 0123001 (2021)
Ruoheng Chai1, Wenwei Liu1, Hua Cheng1、*, Jianguo Tian1, and Shuqi Chen1、2、3、**
Author Affiliations
  • 1The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • 3Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan, Shandong 250358, China
  • show less
    DOI: 10.3788/AOS202141.0123001 Cite this Article Set citation alerts
    Ruoheng Chai, Wenwei Liu, Hua Cheng, Jianguo Tian, Shuqi Chen. Bound States of Continuum in Optical Artificial Micro-Nanostructures: Fundamentals, Developments and Applications[J]. Acta Optica Sinica, 2021, 41(1): 0123001 Copy Citation Text show less
    References

    [1] Yu P, Li J, Tang C et al. Controllable optical activity with non-chiral plasmonic metasurfaces[J]. Light: Science & Applications, 5, e16096(2016).

    [2] Chen S Q, Li Z, Zhang Y B et al. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics[J]. Advanced Optical Materials, 6, 1800104(2018).

    [3] Liu Z, Du S, Cui A et al. High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials[J]. Advanced Materials, 29, 1606298(2017). http://dx.doi.org/10.1002/adma.201606298

    [4] Li Z C, Liu W W, Cheng H et al. Few-layer metasurfaces with arbitrary scattering properties[J]. Science China Physics, Mechanics Astronomy, 63, 284202(2020). http://www.cnki.com.cn/Article/CJFDTotal-JGXG202008002.htm

    [5] Wen D D, Yue F Y, Liu W W et al. Geometric metasurfaces for ultrathin optical devices[J]. Advanced Optical Materials, 6, 1800348(2018).

    [6] Liu W W, Li Z C, Cheng H et al. Momentum analysis for metasurfaces[J]. Physical Review Applied, 8, 014012(2017). http://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.8.014012

    [7] Liu Z C, Li Z C, Liu Z et al. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle[J]. ACS Photonics, 4, 2061-2069(2017). http://www.researchgate.net/publication/318068219_Single-Layer_Plasmonic_Metasurface_Half-Wave_Plates_with_Wavelength-Independent_Polarization_Conversion_Angle

    [8] Li J X, Yu P, Tang C C et al. Bidirectional perfect absorber using free substrate plasmonic metasurfaces[J]. Advanced Optical Materials, 5, 1700152(2017). http://onlinelibrary.wiley.com/doi/10.1002/adom.201700152/abstract

    [9] Li Z C, Liu W W, Cheng H et al. Manipulation of the photonic spin Hall effect with high efficiency in gold-nanorod-based metasurfaces[J]. Advanced Optical Materials, 5, 1700413(2017). http://onlinelibrary.wiley.com/doi/pdf/10.1002/adom.201700413

    [10] Xiang J, Xu Y, Chen J D et al. Tailoring the spatial localization of bound state in the continuum in plasmonic-dielectric hybrid system[J]. Nanophotonics, 9, 133-142(2020). http://www.researchgate.net/publication/338489005_tailoring_the_spatial_localization_of_bound_state_in_the_continuum_in_plasmonic-dielectric_hybrid_system

    [11] Epstein I, Alcaraz D, Huang Z Q et al. Far-field excitation of singular graphene plasmon cavities with ultra-compressed mode volumes[J]. Science, 368, 1219-1223(2020). http://arxiv.org/abs/2002.00366v1

    [12] Jahani S, Jacob Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 11, 23-36(2016).

    [13] Hsu C W, Zhen B, Stone A D et al. Bound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016). http://www.nature.com/articles/natrevmats201648?WT.feed_name=subjects_physics

    [14] Limonov M F, Rybin M V, Poddubny A N et al. Fano resonances in photonics[J]. Nature Photonics, 11, 543-554(2017).

    [15] Miroshnichenko A E, Flach S, Kivshar Y S. Fano resonance in nanoscale structures[J]. Reviews of Modern Physics, 82, 2257-2297(2020). http://arxiv.org/abs/0902.3014v2

    [16] Song Q J, Hu J S, Dai S W et al. 6(34): eabc1160[J]. a lasing threshold mode induced by PT symmetry. Science Advances(2020).

    [17] von Neumann J, Wigner E P. Über merkwürdige diskrete eigenwerte[M]. ∥Wightman A S. The collected works of Eugene Paul Wigner. Berlin: Springer, 291-293(1993).

    [18] Friedrich H, Wintgen D. Interfering resonances and bound states in the continuum[J]. Physical Review A, 32, 3231-3242(1985). http://www.ncbi.nlm.nih.gov/pubmed/9896488

    [19] Marinica D C, Borisov A G, Shabanov S V. Bound states in the continuum in photonics[J]. Physical Review Letters, 100, 183902(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT02000015000010000002000001&idtype=cvips&gifs=Yes

    [20] Plotnik Y, Peleg O, Dreisow F et al. Experimental observation of optical bound states in the continuum[J]. Physical Review Letters, 107, 183901(2011).

    [21] Hsu C W, Zhen B, Lee J et al. Observation of trapped light within the radiation continuum[J]. Nature, 499, 188-191(2013).

    [22] Koshelev K, Lepeshov S, Liu M K et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 121, 193903(2018).

    [23] Albo A, Fekete D, Bahir G. Electronic bound states in the continuum above (Ga, In)(As, N)/(Al, Ga)As quantum wells[J]. Physical Review B, 85, 115307(2012).

    [24] Zhang J M, Braak D, Kollar M. Bound states in the continuum realized in the one-dimensional two-particle Hubbard model with an impurity[J]. Physical Review Letters, 109, 116405(2012). http://www.researchgate.net/publication/225069854_Bound_States_in_the_Continuum_Realized_in_the_One-Dimensional_Two-Particle_Hubbard_Model_with_an_Impurity

    [25] Xiao Y X, Zhang Z Q, Chan C T. A band of bound states in the continuum induced by disorder[J]. Scientific Reports, 8, 5160(2018). http://www.nature.com/articles/s41598-018-23576-z

    [26] Takeichi M, Murakami S. Topological linelike bound states in the continuum[J]. Physical Review B, 99, 035128(2019). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.035128

    [27] Porter R, Evans D V. Embedded Rayleigh-Bloch surface waves along periodic rectangular arrays[J]. Wave Motion, 43, 29-50(2005). http://www.sciencedirect.com/science/article/pii/S0165212505000600

    [28] Linton C M. McIver P. Embedded trapped modes in water waves and acoustics[J]. Wave Motion, 45, 16-29(2007). http://www.sciencedirect.com/science/article/pii/S0165212507000376

    [29] Xiao Y X, Ma G C, Zhang Z Q et al. Topological subspace-induced bound state in the continuum[J]. Physical Review Letters, 118, 166803(2017).

    [30] Lim T C, Farnell G W. Character of pseudo surface waves on anisotropic crystals[J]. The Journal of the Acoustical Society of America, 45, 845-851(1969). http://scitation.aip.org/content/asa/journal/jasa/45/4/10.1121/1.1911556

    [31] Lyapina A A, Maksimov D N, Pilipchuk A S et al. Bound states in the continuum in open acoustic resonators[J]. Journal of Fluid Mechanics, 780, 370-387(2015).

    [32] Sadreev A F, Pilipchuk A S, Lyapina A A. Tuning of Fano resonances by rotation of continuum: wave faucet[J]. Europhysics Letters, 117, 50011(2017).

    [33] Lyapina A A, Pilipchuk A S, Sadreev A F. Trapped modes in a non-axisymmetric cylindrical waveguide[J]. Journal of Sound and Vibration, 421, 48-60(2018). http://www.sciencedirect.com/science/article/pii/S0022460X18300804

    [34] Fan S H, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs[J]. Physical Review B, 65, 235112(2002). http://prola.aps.org/abstract/PRB/v65/i23/e235112

    [35] Koshelev K, Bogdanov A, Kivshar Y. Engineering with bound states in the continuum[J]. Optics and Photonics News, 31, 38-45(2020).

    [36] Fan S, Suh W, Joannopoulos J D. Temporal coupled-mode theory for the Fano resonance in optical resonators[J]. Journal of the Optical Society of America A, 20, 569-572(2003).

    [37] Sadrieva Z, Frizyuk K, Petrov M et al. Multipolar origin of bound states in the continuum[J]. Physical Review B, 100, 115303(2019). http://arxiv.org/abs/1903.00309

    [38] Suh W, Wang Z, Fan S H. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities[J]. IEEE Journal of Quantum Electronics, 40, 1511-1518(2004). http://ieeexplore.ieee.org/document/1337032/

    [39] Remacle F, Munster M. Pavlov-Verevkin V B, et al. Trapping in competitive decay of degenerate states[J]. Physics Letters A, 145, 265-268(1990).

    [40] Volya A, Zelevinsky V. Non-Hermitian effective Hamiltonian and continuum shell model[J]. Physical Review C, 67, 054322(2003). http://adsabs.harvard.edu/abs/2003PhRvC..67e4322V

    [41] Kikkawa R, Nishida M, Kadoya Y. Polarization-based branch selection of bound states in the continuum in dielectric waveguide modes anti-crossed by a metal grating[J]. New Journal of Physics, 21, 113020(2019). http://arxiv.org/abs/1907.09779

    [42] Koshelev K, Favraud G, Bogdanov A et al. Nonradiating photonics with resonant dielectric nanostructures[J]. Nanophotonics, 8, 725-745(2019).

    [43] Sadrieva Z, Frizyuk K, Petrov M et al. Multipole analysis of bound states in the continuum supported by a periodic array of spheres. [C]∥2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), September 16-21, 2019, Rome, Italy. New York: IEEE, 354-356(2019).

    [44] Chen W, Chen Y, Liu W. Singularities and Poincaré indices of electromagnetic multipoles[J]. Physical Review Letters, 122, 153907(2019). http://www.ncbi.nlm.nih.gov/pubmed/31050543

    [45] Chen W J, Chen Y T, Liu W. Multipolar conversion induced subwavelength high-Q Kerker supermodes with unidirectional radiations[J]. Laser & Photonics Reviews, 13, 1900067(2019). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201900067

    [46] Doeleman H M. Monticone F, den Hollander W, et al. Experimental observation of a polarization vortex at an optical bound state in the continuum[J]. Nature Photonics, 12, 397-412(2018).

    [47] Carletti L, Kruk S S, Bogdanov A A et al. High-harmonic generation at the nanoscale boosted by bound states in the continuum[J]. Physical Review Research, 1, 023016(2019). http://www.researchgate.net/publication/335809762_High-harmonic_generation_at_the_nanoscale_boosted_by_bound_states_in_the_continuum

    [48] Kim C S, Satanin A M, Joe Y S et al. Resonant tunneling in a quantum waveguide: effect of a finite-size attractive impurity[J]. Physical Review B, 60, 10962-10970(1999). http://adsabs.harvard.edu/abs/1999PhRvB..6010962K

    [49] Fan S H, Villeneuve P R, Joannopoulos J D et al. Theoretical analysis of channel drop tunneling processes[J]. Physical Review B, 59, 15882-15892(1999). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.59.15882

    [50] Rotter I, Sadreev A F. Influence of branch points in the complex plane on the transmission through double quantum dots[J]. Physical Review E, 69, 066201(2004).

    [51] Rotter I, Sadreev A F. Zeros in single-channel transmission through double quantum dots[J]. Physical Review E, 71, 046204(2005).

    [52] Bulgakov E N, Sadreev A F. Bound states in the continuum in photonic waveguides inspired by defects[J]. Physical Review B, 78, 075105(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000018000008000052000001&idtype=cvips&gifs=Yes

    [53] Ndangali R F, Shabanov S V. Electromagnetic bound states in the radiation continuum for periodic double arrays of subwavelength dielectric cylinders[J]. Journal of Mathematical Physics, 51, 102901(2010).

    [54] Hsu C W, Zhen B, Chua S L et al. Bloch surface eigenstates within the radiation continuum[J]. Light: Science & Applications, 2, e84(2013). http://www.nature.com/lsa/journal/v2/n7/full/lsa201340a.html

    [55] Weimann S, Xu Y, Keil R et al. Compact surface Fano states embedded in the continuum of waveguide arrays[J]. Physical Review Letters, 111, 240403(2013).

    [56] Yang Y, Peng C, Liang Y et al. Analytical perspective for bound states in the continuum in photonic crystal slabs[J]. Physical Review Letters, 113, 037401(2014). http://www.zhangqiaokeyan.com/open-access_resources_thesis/0100090832468.html

    [57] Bulgakov E N, Sadreev A F. Robust bound state in the continuum in a nonlinear microcavity embedded in a photonic crystal waveguide[J]. Optics Letters, 39, 5212-5215(2014).

    [58] Ni L F, Wang Z X, Peng C et al. Tunable optical bound states in the continuum beyond in-plane symmetry protection[J]. Physical Review B, 94, 245148(2016).

    [59] Li L S, Yin H C. Bound states in the continuum in double layer structures[J]. Scientific Reports, 6, 26988(2016). http://www.nature.com/articles/srep26988

    [60] Wang Y F, Song J M, Dong L et al. Optical bound states in slotted high-contrast gratings[J]. Journal of the Optical Society of America B, 33, 2472-2479(2016).

    [61] Wang T C, Zhang S H. Large enhancement of second harmonic generation from transition-metal dichalcogenide monolayer on grating near bound states in the continuum[J]. Optics Express, 26, 322-337(2018).

    [62] Wang H F, Gupta S K, Zhu X Y et al. Bound states in the continuum in a bilayer photonic crystal with TE-TM cross coupling[J]. Physical Review B, 98, 214101(2018). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.214101

    [63] Krasikov S D, Bogdanov A A, Iorsh I V. Nonlinear bound states in the continuum of a one-dimensional photonic crystal slab[J]. Physical Review B, 97, 224309(2018). http://arxiv.org/abs/1803.10980v1

    [64] Bulgakov E N, Maksimov D N, Semina P N et al. Propagating bound states in the continuum in dielectric gratings[J]. Journal of the Optical Society of America B, 35, 1218-1222(2018).

    [65] Wang X, Li S, Zhou C. Polarization-independent toroidal dipole resonances driven by symmetry-protected BIC in ultraviolet region[J]. Optics Express, 28, 11983-11989(2020). http://www.researchgate.net/publication/340365021_polarization-independent_toroidal_dipole_resonances_driven_by_symmetry-protected_bic_in_ultraviolet_region

    [66] Koshelev K L, Sychev S K, Sadrieva Z F et al. Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum[J]. Physical Review B, 98, 161113(2018). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.161113

    [67] Azzam S I, Shalaev V M, Boltasseva A et al. Formation of bound states in the continuum in hybrid pasmonic-photonic systems[J]. Physical Review Letters, 121, 253901(2018). http://arxiv.org/abs/1808.08244v2

    [68] Zhen B, Hsu C W, Lu L et al. Topological nature of optical bound states in the continuum[J]. Physical Review Letters, 113, 257401(2014).

    [69] Zhang Y W, Chen A, Liu W Z et al. Observation of polarization vortices in momentum space[J]. Physical Review Letters, 120, 186103(2018). http://europepmc.org/abstract/MED/29775334

    [70] Chen A, Liu W Z, Zhang Y W et al. Observing vortex polarization singularities at optical band degeneracies[J]. Physical Review B, 99, 180101(2019). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.180101

    [71] Liu W Z, Wang B, Zhang Y W et al. Circularly polarized states spawning from bound states in the continuum[J]. Physical Review Letters, 123, 116104(2019). http://www.ncbi.nlm.nih.gov/pubmed/31573246

    [72] Jin J C, Yin X F, Ni L F et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering[J]. Nature, 574, 501-504(2019). http://www.researchgate.net/publication/336745055_topologically_enabled_ultrahigh-q_guided_resonances_robust_to_out-of-plane_scattering

    [73] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [74] Chen S, Li Z, Liu W et al. From single-dimensional to multidimensional manipulation of optical waves with metasurfaces[J]. Advanced Materials, 31, 1802458(2019).

    [75] Chen X, Huang L, Mühlenbernd H et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 3, 1198(2012).

    [76] Liu W W, Li Z C, Cheng H et al. Metasurface enabled wide-angle Fourier lens[J]. Advanced Materials, 30, 1706368(2018). http://europepmc.org/abstract/MED/29672964

    [77] Chen S Q, Liu W W, Li Z C et al. Metasurface-empowered optical multiplexing and multifunction[J]. Advanced Materials, 32, 1805912(2020).

    [78] Liu W W, Li Z C, Li Z et al. Energy-tailorable spin-selective multifunctional metasurfaces with full Fourier components[J]. Advanced Materials, 31, 1901729(2019). http://onlinelibrary.wiley.com/doi/10.1002/adma.201901729

    [79] Li Z C, Liu W W, Cheng H et al. Spin-selective full-dimensional manipulation of optical waves with chiral mirror[J]. Advanced Materials, 32, 1907983(2020). http://onlinelibrary.wiley.com/doi/10.1002/adma.201907983

    [80] Mueller J P B, Rubin N A, Devlin R C et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 118, 113901(2017).

    [81] Yang B, Liu W W, Li Z C et al. Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces[J]. Nano Letters, 19, 4221-4228(2019).

    [82] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 4, 2807(2013).

    [83] Zheng G, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).

    [84] Wen D D, Yue F Y, Li G X et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 6, 8241(2015). http://europepmc.org/articles/PMC4579785

    [85] Li G X, Chen S M, Pholchai N et al. Continuous control of the nonlinearity phase for harmonic generations[J]. Nature Materials, 14, 607-612(2015).

    [86] Li G X, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces[J]. Nature Reviews Materials, 2, 17010(2017).

    [87] Li Z, Liu W W, Li Z C et al. Tripling the capacity of optical vortices by nonlinear metasurface[J]. Laser & Photonics Reviews, 12, 1800164(2018). http://onlinelibrary.wiley.com/doi/pdf/10.1002/lpor.201800164

    [88] Li Z, Liu W, Li Z et al. Fano-resonance-based mode-matching hybrid metasurface for enhanced second-harmonic generation[J]. Optics Letters, 42, 3117-3120(2017).

    [89] Ma M L, Li Z, Liu W W et al. Optical information multiplexing with nonlinear coding metasurfaces[J]. Laser & Photonics Reviews, 13, 1900045(2019). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201900045

    [90] Krasnok A, Tymchenko M, Alù A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics[J]. Materials Today, 21, 8-21(2018). http://www.sciencedirect.com/science/article/pii/S136970211730233X

    [91] Li Z, Liu W W, Geng G Z et al. Multiplexed nondiffracting nonlinear metasurfaces[J]. Advanced Functional Materials, 30, 1910744(2020). http://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201910744

    [92] Huang L, Chen X, Mühlenbernd H et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 12, 5750-5755(2012).

    [93] Bao Y J, Ni J C, Qiu C W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams[J]. Advanced Materials, 32, 1905659(2020). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204113725355.html

    [94] Li Z, Cheng H, Liu Z et al. Plasmonic Airy beam generation by both phase and amplitude modulation with metasurfaces[J]. Advanced Optical Materials, 4, 1230-1235(2016). http://onlinelibrary.wiley.com/doi/abs/10.1002/adom.201600108

    [95] Ohana D, Desiatov B, Mazurski N et al. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides[J]. Nano Letters, 16, 7956-7961(2016).

    [96] Zhang Y B, Li Z C, Liu W W et al. Spin-selective and wavelength-selective demultiplexing based on waveguide-integrated all-dielectric metasurfaces[J]. Advanced Optical Materials, 7, 1801273(2019). http://onlinelibrary.wiley.com/doi/10.1002/adom.201801273

    [97] Li Z, Kim M H, Wang C et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces[J]. Nature Nanotechnology, 12, 675-683(2017).

    [98] Zhou Y, Zheng H Y, Kravchenko I I et al. Flat optics for image differentiation[J]. Nature Photonics, 14, 316-323(2020). http://www.nature.com/articles/s41566-020-0591-3

    [99] Cheng H, Liu Z C, Chen S Q et al. Emergent functionality and controllability in few-layer metasurfaces[J]. Advanced Materials, 27, 5410-5421(2015). http://dx.doi.org/10.1002/adma.201501506

    [100] Cheng H, Wei X Y, Yu P et al. Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces[J]. Applied Physics Letters, 110, 171903(2017).

    [101] Chen S Q, Zhang Y B, Li Z et al. Empowered layer effects and prominent properties in few-layer metasurfaces[J]. Advanced Optical Materials, 7, 1801477(2019). http://onlinelibrary.wiley.com/doi/full/10.1002/adom.201801477

    [102] Yang B, Cheng H, Chen S Q et al. Multi-dimensional manipulation of optical field by metasurfaces based on Fourier analysis[J]. Acta Optica Sinica, 39, 0126005(2019).

    [103] Li Z C, Cheng H, Chen S Q. Artificial optical nanostructures[J]. Physics, 48, 357-366(2019).

    [104] Zhang Y B, Liu H, Cheng H et al. Multidimensional manipulation of wave fields based on artificial microstructures[J]. Opto-Electronic Advances, 3, 200002(2020). http://www.researchgate.net/publication/346953295_multidimensional_manipulation_of_wave_fields_based_on_artificial_microstructures

    [105] Liu M K, Choi D Y. Extreme Huygens' metasurfaces based on quasi-bound states in the continuum[J]. Nano Letters, 18, 8062-8069(2018). http://www.ncbi.nlm.nih.gov/pubmed/30499674

    [106] Xu L, Kamali K Z, Huang L J et al. Dynamic nonlinear image tuning through magnetic dipole quasi-BIC ultrathin resonators[J]. Advanced Science, 6, 1802119(2019). http://onlinelibrary.wiley.com/doi/10.1002/advs.201802119

    [107] Koshelev K, Tang Y T, Li K F et al. Nonlinear metasurfaces governed by bound states in the continuum[J]. ACS Photonics, 6, 1639-1644(2019). http://arxiv.org/abs/1905.05402

    [108] Liu Z J, Xu Y, Lin Y et al. High-Q quasibound states in the continuum for nonlinear metasurfaces[J]. Physical Review Letters, 123, 253901(2019).

    [109] Cong L Q, Singh R. Symmetry-protected dual bound states in the continuum in metamaterials[J]. Advanced Optical Materials, 7, 1900383(2019). http://onlinelibrary.wiley.com/doi/pdf/10.1002/adom.201900383

    [110] Mermet-Lyaudoz R, Dubois F, Hoang N V et al. -05-09)[2020-09-17]. https:∥arxiv.org/abs/1905.03868?context=physics.optics.(2019).

    [111] Kupriianov A S, Xu Y, Sayanskiy A et al. Metasurface engineering through bound states in the continuum[J]. Physical Review Applied, 12, 014024(2019). http://arxiv.org/abs/1904.04688

    [112] Fedotov V A, Rose M, Prosvirnin S L et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Physical Review Letters, 99, 147401(2007).

    [113] Yu P C, Kupriianov A S, Dmitriev V et al. All-dielectric metasurfaces with trapped modes: group-theoretical description[J]. Journal of Applied Physics, 125, 143101(2019). http://www.researchgate.net/publication/332284716_All-dielectric_metasurfaces_with_trapped_modes_Group-theoretical_description

    [114] Sayanskiy A, Kupriianov A S, Xu S et al. Controlling high-Q trapped modes in polarization-insensitive all-dielectric metasurfaces[J]. Physical Review B, 99, 085306(2019). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.085306

    [115] Han S, Cong L Q, Srivastava Y K et al. All-dielectric active terahertz photonics driven by bound states in the continuum[J]. Advanced Materials, 31, 1901921(2019). http://onlinelibrary.wiley.com/doi/10.1002/adma.201901921

    [116] Monticone F, Sounas D, Krasnok A et al. Can a nonradiating mode be externally excited? Nonscattering states versus embedded eigenstates[J]. ACS Photonics, 6, 3108-3114(2019). http://pubs.acs.org/doi/10.1021/acsphotonics.9b01104

    [117] Monticone F, Alù A. Embedded photonic eigenvalues in 3D nanostructures[J]. Physical Review Letters, 112, 213903(2014).

    [118] Koshelev K, Bogdanov A, Kivshar Y. Meta-optics and bound states in the continuum[J]. Science Bulletin, 64, 836-842(2019).

    [119] Baryshnikova K V, Smirnova D A. Luk'Yanchuk B S, et al. Optical anapoles: concepts and applications[J]. Advanced Optical Materials, 7, 1801350(2019).

    [120] Rybin M V, Koshelev K L, Sadrieva Z F et al. High-Q supercavity modes in subwavelength dielectric resonators[J]. Physical Review Letters, 119, 243901(2017). http://www.ncbi.nlm.nih.gov/pubmed/29286713

    [121] Bogdanov A A, Koshelev K L, Kapitanova P V et al. Bound states in the continuum and Fano resonances in the strong mode coupling regime[J]. Advanced Photonics, 1, 016001(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJ190130000069bIeKhN

    [122] Carletti L. Koshelev K, de Angelis C, et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum[J]. Physical Review Letters, 121, 033903(2018).

    [123] Koshelev K, Kruk S, Melik-Gaykazyan E et al. Subwavelength dielectric resonators for nonlinear nanophotonics[J]. Science, 367, 288-292(2020). http://www.researchgate.net/publication/338656316_subwavelength_dielectric_resonators_for_nonlinear_nanophotonics

    [124] Liang Y, Koshelev K, Zhang F C et al. Bound states in the continuum in anisotropic plasmonic metasurfaces[J]. Nano Letters, 20, 6351-6356(2020). http://www.researchgate.net/publication/341815853_Bound_States_in_the_Continuum_in_Anisotropic_Plasmonic_Metasurfaces

    [125] Fei Z Y, Zhao W J, Palomaki T A et al. Ferroelectric switching of a two-dimensional metal[J]. Nature, 560, 336-339(2018).

    [126] Yao X H, Belyanin A. Giant optical nonlinearity of graphene in a strong magnetic field[J]. Physical Review Letters, 108, 255503(2012).

    [127] Foley J M, Young S M, Phillips J D. Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating[J]. Physical Review B, 89, 165111(2014).

    [128] Mocella V, Romano S. Giant field enhancement in photonic resonant lattices[J]. Physical Review B, 92, 155117(2015). http://adsabs.harvard.edu/abs/2015PhRvB..92o5117M

    [129] Yoon J W, Song S H, Magnusson R. Critical field enhancement of asymptotic optical bound states in continuum[J]. Scientific Reports, 5, 18301(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4682140/

    [130] Zhang M D, Zhang X D. Ultrasensitive optical absorption in graphene based on bound states in the continuum[J]. Scientific Reports, 5, 8266(2015). http://www.nature.com/articles/srep08266

    [131] Kodigala A, Lepetit T, Gu Q et al. Lasing action from photonic bound states in continuum[J]. Nature, 541, 196-199(2017).

    [132] Rybin M, Kivshar Y. Supercavity lasing[J]. Nature, 541, 164-165(2017).

    [133] Bahari B, Vallini F, Lepetit T et al. -07-16)[2020-09-17]. https:∥arxiv., org/abs/1707, 00181(2017).

    [134] Ha S T, Fu Y H, Emani N K et al. Directional lasing in resonant semiconductor nanoantenna arrays[J]. Nature Nanotechnology, 13, 1042-1047(2018).

    [135] Wang B, Liu W Z, Zhao M X et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum[J]. Nature Photonics, 14, 623-628(2020). http://www.researchgate.net/publication/342723838_Generating_optical_vortex_beams_by_momentum-space_polarization_vortices_centred_at_bound_states_in_the_continuum/download

    [136] Huang C, Zhang C, Xiao S M et al. Ultrafast control of vortex microlasers[J]. Science, 367, 1018-1021(2020). http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM32108108

    [137] Yu Z, Sun X. Acousto-optic modulation of photonic bound state in the continuum[J]. Light: Science & Applications, 9, 1(2020).

    [138] Yu Z J, Tong Y Y, Tsang H K et al. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum[J]. Nature Communications, 11, 2602(2020). http://www.nature.com/articles/s41467-020-15358-x

    [139] Liu Y, Zhou W, Sun Y. Optical refractive index sensing based on high-Q bound states in the continuum in free-space coupled photonic crystal slabs[J]. Sensors, 17, 1861-1872(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5579755/

    [140] Romano S, Lamberti A, Masullo M et al. Optical biosensors based on photonic crystals supporting bound states in the continuum[J]. Materials, 11, 526(2018). http://europepmc.org/abstract/MED/29601484

    [141] Romano S, Zito G. Yépez S N L, et al. Tuning the exponential sensitivity of a bound-state-in-continuum optical sensor[J]. Optics Express, 27, 18776-18786(2019).

    [142] Leitis A, Tittl A, Liu M K et al. 5(5): eaaw2871(2019).

    [143] Yesilkoy F, Arvelo E R, Jahani Y et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 13, 390-396(2019). http://www.nature.com/articles/s41566-019-0394-6

    [144] Ndao A, Hsu L, Cai W et al. Differentiating and quantifying exosome secretion from a single cell using quasi-bound states in the continuum[J]. Nanophotonics, 9, 1081-1086(2020). http://www.researchgate.net/publication/340827168_Differentiating_and_quantifying_exosome_secretion_from_a_single_cell_using_quasi-bound_states_in_the_continuum

    [145] Vardeny Z V, Nahata A, Agrawal A. Optics of photonic quasicrystals[J]. Nature Photonics, 7, 177-187(2013).

    [146] Tang Y T, Deng J H, Li K F et al. Quasicrystal photonic metasurfaces for radiation controlling of second harmonic generation[J]. Advanced Materials, 31, 1901188(2019). http://www.ncbi.nlm.nih.gov/pubmed/30997720

    [147] Feng L, El-Ganainy R, Ge L. Non-Hermitian photonics based on parity-time symmetry[J]. Nature Photonics, 11, 752-762(2017). http://www.nature.com/articles/s41566-017-0031-1

    [148] Kartashov Y V, Milián C, Konotop V V et al. Bound states in the continuum in a two-dimensional PT-symmetric system[J]. Optics Letters, 43, 575-578(2018). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-43-3-575

    Ruoheng Chai, Wenwei Liu, Hua Cheng, Jianguo Tian, Shuqi Chen. Bound States of Continuum in Optical Artificial Micro-Nanostructures: Fundamentals, Developments and Applications[J]. Acta Optica Sinica, 2021, 41(1): 0123001
    Download Citation