• High Power Laser Science and Engineering
  • Vol. 10, Issue 2, 02000e13 (2022)
J. J. Pilgram1、*, M. B. P. Adams2, C. G. Constantin1, P. V. Heuer3, S. Ghazaryan1, M. Kaloyan1, R. S. Dorst1, D. B. Schaeffer4, P. Tzeferacos2、3, and C. Niemann1
Author Affiliations
  • 1Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA90095, USA
  • 2Department of Physics and Astronomy, University of Rochester, Rochester, NY14627, USA
  • 3Laboratory for Laser Energetics, University of Rochester, Rochester, NY14623, USA
  • 4Department of Astrophysical Sciences, Princeton University, Princeton, NJ08540, USA
  • show less
    DOI: 10.1017/hpl.2022.2 Cite this Article Set citation alerts
    J. J. Pilgram, M. B. P. Adams, C. G. Constantin, P. V. Heuer, S. Ghazaryan, M. Kaloyan, R. S. Dorst, D. B. Schaeffer, P. Tzeferacos, C. Niemann. High repetition rate exploration of the Biermann battery effect in laser produced plasmas over large spatial regions[J]. High Power Laser Science and Engineering, 2022, 10(2): 02000e13 Copy Citation Text show less

    Abstract

    In this paper we present a high repetition rate experimental platform for examining the spatial structure and evolution of Biermann-generated magnetic fields in laser-produced plasmas. We have extended the work of prior experiments, which spanned over millimeter scales, by spatially measuring magnetic fields in multiple planes on centimeter scales over thousands of laser shots. Measurements with magnetic flux probes show azimuthally symmetric magnetic fields that range from 60 G at 0.7 cm from the target to 7 G at 4.2 cm from the target. The expansion rate of the magnetic fields and evolution of current density structures are also mapped and examined. Electron temperature and density of the laser-produced plasma are measured with optical Thomson scattering and used to directly calculate a magnetic Reynolds number of $1.4\times {10}^4$ , confirming that magnetic advection is dominant at $\ge 1.5$ cm from the target surface. The results are compared to FLASH simulations, which show qualitative agreement with the data.
    $$\begin{align}\displaystyle \hspace{-1pc} \begin{array}{l}\frac{\partial \overrightarrow{B}}{\partial t}=\overrightarrow{\nabla}\times \left({\overrightarrow{v}}_{\rm e}\times \overrightarrow{B}\right)+\frac{\eta {c}^2}{4\pi }{\nabla}^2\overrightarrow{B}\\ {}\kern5em -\frac{1}{en_{\rm e}}\overrightarrow{\nabla}\times \left(\overrightarrow{J}\times \overrightarrow{B}\right)+\frac{c}{en_{\rm e}}\overrightarrow{\nabla}{T}_{\rm e}\times \overrightarrow{\nabla}{n}_{\rm e},\end{array}\end{align}$$ ((1))

    View in Article

    $$\begin{align}{\overrightarrow{B}}_{\rm source}=-\frac{c}{en_{\rm e}}\left(\frac{\partial {T}_{\rm e}}{\partial r}\frac{\partial {n}_{\rm e}}{\partial z}-\frac{\partial {T}_{\rm e}}{\partial z}\frac{\partial {n}_{\rm e}}{\partial r}\right)\widehat{\theta},\end{align}$$ ((2))

    View in Article

    $$\begin{align}{R}_{\rm m}= UL/\eta,\end{align}$$ ((3))

    View in Article

    $$\begin{align}\overrightarrow{B}=\frac{A}{an_{\rm b}g}\left[\int {\overrightarrow{V}}_{\rm measured}(t) \mathrm{d}t+{\tau}_{\rm s}{\overrightarrow{V}}_{\rm measured}(t)+{\overrightarrow{V}}_{\rm o}\right]+{\overrightarrow{B}}_{\rm o},\end{align}$$ ((4))

    View in Article

    J. J. Pilgram, M. B. P. Adams, C. G. Constantin, P. V. Heuer, S. Ghazaryan, M. Kaloyan, R. S. Dorst, D. B. Schaeffer, P. Tzeferacos, C. Niemann. High repetition rate exploration of the Biermann battery effect in laser produced plasmas over large spatial regions[J]. High Power Laser Science and Engineering, 2022, 10(2): 02000e13
    Download Citation