• Laser & Optoelectronics Progress
  • Vol. 58, Issue 5, 0500005 (2021)
Xue Yang, Huilai Sun*, Duanmu Yue, and Jianlin Sun
Author Affiliations
  • School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
  • show less
    DOI: 10.3788/LOP202158.0500005 Cite this Article Set citation alerts
    Xue Yang, Huilai Sun, Duanmu Yue, Jianlin Sun. Research Progress of Femtosecond Laser Fabrication of Microlens Array[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0500005 Copy Citation Text show less
    References

    [1] Mukaida M, Yan J W. Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo. International Journal of Machine Tools and Manufacture, 115, 2-14(2017).

    [2] Wang M R, Su H. Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication. Applied Optics, 37, 7568-7576(1998).

    [3] Su C H, Pan C T. Fabrication of high fill factor optical film using two-layer photoresists. Journal of Modern Optics, 55, 33-42(2008).

    [4] McCall B, Tkaczyk T S. Rapid fabrication of miniature lens arrays by four-axis single point diamond machining. Optics Express, 21, 3557-3572(2013).

    [5] Wang W, Zhou C H. New technology for fabrication of polymer microlens arrays. Chinese Journal of Lasers, 36, 2869-2872(2009).

    [6] Lim C S, Hong M H, Lin Y et al. Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning. Applied Physics Letters, 89, 191125(2006).

    [7] Chang C Y, Yang S Y, Chu M H. Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process. Microelectronic Engineering, 84, 355-361(2007).

    [8] Haske W, Chen V W, Hales J M et al. 65 nm feature sizes using visible wavelength 3-D multiphoton lithography. Optics Express, 15, 3426-3436(2007).

    [9] Kim H H, Lee S G et al. Fabrication of novel double microlens using two step soft lithography. Microelectronic Engineering, 87, 1033-1036(2010).

    [10] Minh P N, Ono T, Haga Y et al. Bach fabrication of microlens at the end of optical fiber using self-photolithgraphy and etching techniques. Optical Review, 10, 150-154(2003).

    [11] Zhu L, Gao Y Y, Hu X Y et al. Progress in femtosecond laser fabrication of artificial compound eye. Chinese Science Bulletin, 64, 1254-1267(2019).

    [12] Guo R, Xiao S, Zhai X et al. Micro lens fabrication by means of femtosecond two photon photopolymerization. Optics Express, 14, 810-816(2006).

    [13] Chen F, Zhang D S, Yang Q et al. Bioinspired wetting surface via laser microfabrication. ACS Applied Materials & Interfaces, 5, 6777-6792(2013).

    [14] Kato J I, Takeyasu N, Adachi Y et al. Multiple-spot parallel processing for laser micronanofabrication. Applied Physics Letters, 86, 044102(2005).

    [15] Matsuo S, Juodkazis S, Misawa H. Femtosecond laser microfabrication of periodic structures using a microlens array. Applied Physics A, 80, 683-685(2005).

    [16] Gissibl T, Thiele S, Herkommer A et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics, 10, 554-560(2016).

    [17] Shi Y, Xu B, Wu D et al. Research progress on fabrication of functional microfluidic chips using femtosecond laser direct writing technology. Chinese Journal of Lasers, 46, 1000001(2019).

    [18] Luo S Z, Chen Z, Li X K et al. Controlling quantum states of atoms and molecules by ultrafast femtosecond laser fields. Acta Optica Sinica, 39, 0126007(2019).

    [19] Serbin J, Egbert A, Ostendorf A et al. Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics. Optics Letters, 28, 301-303(2003).

    [20] Kelly B E, Bhattacharya I, Heidari H et al. Volumetric additive manufacturing via tomographic reconstruction. Science, 363, 1075-1079(2019).

    [21] Saha S K, Wang D E, Nguyen V H et al. Scalable submicrometer additive manufacturing. Science, 366, 105-109(2019).

    [22] Babushok V I, DeLucia F C, Gottfried J L et al. Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement. Spectrochimica Acta Part B: Atomic Spectroscopy, 61, 999-1014(2006).

    [23] Bonse J, Höhm S, Kirner S V et al. Laser-induced periodic surface structures: a scientific evergreen. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1(2017).

    [24] Zhang Y L, Chen Q D, Xia H et al. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 5, 435-448(2010).

    [25] Žukauskas A, Malinauskas M, Reinhardt C et al. Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization. Applied Optics, 51, 4995-5003(2012).

    [26] Yan W S, Hossain M M, Gu M. High light-directing micrometer-sized parabolic mirror arrays. Optics Letters, 38, 3177-3180(2013).

    [27] Ergin T, Stenger N, Brenner P et al. Three-dimensional invisibility cloak at optical wavelengths. Science, 328, 337-339(2010).

    [28] Sun H B, Kawakami T, Xu Y et al. Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption. Optics Letters, 25, 1110-1112(2000).

    [29] Hu Y L, Chen Y H, Ma J Q et al. High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization. Applied Physics Letters, 103, 141112(2013).

    [30] Xing J F, Zheng M L, Duan X M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chemical Society Reviews, 44, 5031-5039(2015).

    [31] Malinauskas M, Purlys V, Rutkauskas M et al. Two-photon polymerization for fabrication of three-dimensional micro- and nanostructures over a large area. Proceedings of SPIE, 7204, 72040C(2009).

    [32] Wu D, Chen Q D, Niu L G et al. 100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision. IEEE Photonics Technology Letters, 21, 1535-1537(2009).

    [33] Wu D, Niu L G, Wu S Z et al. Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate. Lab on a Chip, 15, 1515-1523(2015).

    [34] Wang C W, Yang L, Hu Y L et al. Femtosecond mathieu beams for rapid controllable fabrication of complex microcages and application in trapping microobjects. ACS Nano, 13, 4667-4676(2019).

    [35] Kuang Z, Perrie W, Leach J et al. High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator. Applied Surface Science, 255, 2284-2289(2008).

    [36] Smalley D E, Smithwick Q Y J, Bove V M et al. Anisotropic leaky-mode modulator for holographic video displays. Nature, 498, 313-317(2013).

    [37] Yang L, El-Tamer A, Hinze U et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator. Optics and Lasers in Engineering, 70, 26-32(2015).

    [38] Lin J Q, Kan Y D, Jing X et al. Design and fabrication of a three-dimensional artificial compound eye using two-photon polymerization. Micromachines, 9, E336(2018).

    [39] He Z Q, Lee Y H, Chanda D et al. Adaptive liquid crystal microlens array enabled by two-photon polymerization. Optics Express, 26, 21184-21193(2018).

    [40] Peng Y, Jradi S, Yang X Y et al. 3D photoluminescent nanostructures containing quantum dots fabricated by two-photon polymerization: influence of quantum dots on the spatial resolution of laser writing. Advanced Materials Technologies, 4, 1800522(2019).

    [41] Liu H G, Lin W X, Lin Z Y et al. Self-organized periodic microholes array formation on aluminum surface via femtosecond laser ablation induced incubation effect. Advanced Functional Materials, 29, 1903576(2019).

    [42] Ródenas A, Gu M, Corrielli G et al. Three-dimensional femtosecond laser nanolithography of crystals. Nature Photonics, 13, 105-109(2019).

    [43] Chen F, Yang Q, Bian H et al. Micro-nano fabrication of femtosecond laser wet etch. Journal of Applied Optics, 35, 150-154(2014).

    [44] Tian Y X, Zhang F, Ding K W et al. Fabrication of micro-pillar arrayon silicon surface by femtosecond laser direct writing mask. Laser & Optoelectronics Progress, 56, 183201(2019).

    [45] Liu F, Zhang F, Bian H et al. Development and preparation of refractive infrared microlens array device. Laser & Optoelectronics Progress, 57, 071607(2020).

    [46] Chen F, Liu H W, Yang Q et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method. Optics Express, 18, 20334-20343(2010).

    [47] Deng Z F, Chen F, Yang Q et al. Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging. Advanced Functional Materials, 26, 1995-2001(2016).

    [48] Cao X W, Chen Q D, Zhang L et al. Single-pulse writing of a concave microlens array. Optics Letters, 43, 831-834(2018).

    [49] Li M J, Li M J, Yang Q et al. Underwater superoleophobic and anti-oil microlens array prepared by combing femtosecond laser wet etching and direct writing techniques. Optics Express, 27, 35903-35913(2019).

    [50] Liu X Q, Chen Q D, Guan K M et al. Dry-etching-assisted femtosecond laser machining. Laser & Photonics Reviews, 11, 1600115(2017).

    [51] Liu X Q, Yang S N, Yu L et al. Rapid engraving of artificial compound eyes from curved sapphire substrate. Advanced Functional Materials, 29, 1900037(2019).

    [52] Tanida J, Kumagai T, Yamada K et al. Thin observation module by bound optics (TOMBO): an optoelectronic image capturing system. Proceedings of SPIE, 4089, 1030-1036(2000).

    [53] Seifert L, Liesener J, Tiziani H J. The adaptive Shack-Hartmann sensor. Optics Communications, 216, 313-319(2003).

    [54] Levoy M, Zhang Z, McDowall I. Recording and controlling the 4D light field in a microscope using microlens arrays. Journal of Microscopy, 235, 144-162(2009).

    [55] Jin Y H, Hassan A, Jiang Y J. Freeform microlens array homogenizer for excimer laser beam shaping. Optics Express, 24, 24846-24858(2016).

    [56] Hung T Q, Chin W H, Sun Y et al. A novel lab-on-chip platform with integrated solid phase PCR and supercritical angle fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection. Biosensors and Bioelectronics, 90, 217-223(2017).

    [57] Zhou L, Bai G L, Guo X et al. Light beam shaping for collimated emission from white organic light-emitting diodes using customized lenticular microlens arrays structure. Applied Physics Letters, 112, 201902(2018).

    [58] Wu D, Xu J, Niu L G et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light: Science & Applications, 4, e228(2015).

    [59] Deng Z F, Yang Q, Chen F et al. Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining. Optics Letters, 40, 1928-1931(2015).

    [60] Li M J, Yang Q, Chen F et al. Integration of great water repellence and imaging performance on a superhydrophobic PDMS microlens array by femtosecond laser microfabrication. Advanced Engineering Materials, 21, 1800994(2019).

    [61] Bian H, Wei Y, Yang Q et al. Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process. Applied Physics Letters, 109, 221109(2016).

    [62] Wu D, Wang J N, Niu L G et al. Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging. Advanced Optical Materials, 2, 751-758(2014).

    [63] Salter P S, Booth M J. Addressable microlens array for parallel laser microfabrication. Optics Letters, 36, 2302-2304(2011).

    [64] Deng C, Kim H, Ki H. Fabrication of a compound infrared microlens array with ultrashort focal length using femtosecond laser-assisted wet etching and dual-beam pulsed laser deposition. Optics Express, 27, 28679-28691(2019).

    [65] Liu X Q, Yu L, Yang S N et al. Optical nanofabrication of concave microlens arrays. Laser & Photonics Reviews, 13, 1800272(2019).

    [66] Pan A, Chen T, Li C X et al. Parallel fabrication of silicon concave microlens array by femtosecond laser irradiation and mixed acid etching. Chinese Optics Letters, 14, 052201(2016).

    [67] Pan A, Gao B, Chen T et al. Fabrication of concave spherical microlenses on silicon by femtosecond laser irradiation and mixed acid etching. Optics Express, 22, 15245-15250(2014).

    Xue Yang, Huilai Sun, Duanmu Yue, Jianlin Sun. Research Progress of Femtosecond Laser Fabrication of Microlens Array[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0500005
    Download Citation