• Matter and Radiation at Extremes
  • Vol. 6, Issue 1, 015902 (2021)
Sergio Davis1、2, Felipe González-Cataldo3、4, Gonzalo Gutiérrez4, Gonzalo Avaria1、2, Biswajit Bora1、2, Jalaj Jain1, José Moreno1、2, Cristian Pavez1、2, and Leopoldo Soto1、2
Author Affiliations
  • 1Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile
  • 2Departamento de Física, Facultad de Ciencias Exactas, Universidad Andres Bello, Sazié 2212, piso 7, Santiago 8370136, Chile
  • 3Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
  • 4Grupo de Nanomateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
  • show less
    DOI: 10.1063/5.0030158 Cite this Article
    Sergio Davis, Felipe González-Cataldo, Gonzalo Gutiérrez, Gonzalo Avaria, Biswajit Bora, Jalaj Jain, José Moreno, Cristian Pavez, Leopoldo Soto. A model for defect formation in materials exposed to radiation[J]. Matter and Radiation at Extremes, 2021, 6(1): 015902 Copy Citation Text show less
    References

    [1] V. A. Gribkov, M. A. Orlova, O. A. Kost et al. Enzyme activation and inactivation induced by low doses of irradiation. Appl. Biochem. Biotechnol., 88, 243-255(2000).

    [2] S. C. Bott, D. M. Haas, J. Kim et al. Supersonic jet formation and propagation in x-pinches. Astrophys. Space Sci., 336, 33-40(2011).

    [3] I. V. Borovitskaya, V. A. Gribkov, E. V. Demina et al. Application of dense plasma focus devices and lasers in the radiation material sciences for the goals of inertial fusion beyond ignition. Matter Radiat. Extremes, 5, 045403(2020).

    [4] R. Gonzalez-Arrabal, A. Rivera, J. M. Perlado. Limitations for tungsten as plasma facing material in the diverse scenarios of the European inertial confinement fusion facility HiPER: Current status and new approaches. Matter Radiat. Extremes, 5, 055201(2020).

    [5] M. P. Short, Y. Li, Y. Yang et al. Ion radiation albedo effect: Influence of surface roughness on ion implantation and sputtering of materials. Nucl. Fusion, 57, 016038(2017).

    [6] G. Cheng, W. Xu, Y. Zhang et al. In-situ atomic-scale observation of irradiation-induced void formation. Nat. Commun., 4, 2288(2013).

    [7] E. Artacho, K. Trachenko, M. T. Dove et al. Atomistic simulations of resistance to amorphization by radiation damage. Phys. Rev. B, 73, 174207(2006).

    [8] E. Figueroa, G. Gutiérrez, E. Bringa, D. Tramontina. Mechanical properties of irradiated nanowires—A molecular dynamics study. J. Nucl. Mater., 467, 677-682(2015).

    [9] R. G. Hoagland, A. F. Voter, S. M. Valone, B. P. Uberuaga. Direct transformation of vacancy voids to stacking fault tetrahedra. Phys. Rev. Lett., 99, 135501(2007).

    [10] G. S. Was. Fundamentals of Radiation Materials Science(2017).

    [11] B. Verberck. Building the way to fusion energy. Nat. Phys., 12, 395-397(2016).

    [12] E. I. Moses. Advances in inertial confinement fusion at the National Ignition Facility (NIF). Fusion Eng. Des., 85, 983-986(2010).

    [13] O. A. Hurricane, D. T. Casey, D. A. Callahan et al. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343-348(2014).

    [14] A. W. Leonard. Edge-localized-modes in tokamaks. Phys. Plasmas, 21, 090501(2014).

    [15] C. H. Skinner, G. Federici, J. N. Brooks et al. Plasma-material interactions in current tokamaks and their implications for next step fusion reactors. Nucl. Fusion, 41, 1967(2001).

    [16] A. Rivera, J. Alvarez, R. González-Arrabal et al. Potential common radiation problems for components and diagnostics in future magnetic and inertial confinement fusion devices. Fusion Eng. Des., 86, 1762-1765(2011).

    [17] M. Fujitsuka, H. Shinno, T. Tanabe, H. Shiraishi. Thermal shock experiments for carbon materials by electron beams. J. Nucl. Mater., 179-181, 189-192(1991).

    [18] J. Linke, I. V. Mazul, F. Escourbiac et al. High heat flux testing of plasma facing materials and components—Status and perspectives for iter related activities. J. Nucl. Matter, 367, 1422-1431(2007).

    [19] V. Pelõhh, T. Barashkova, T. Laas. Methods for estimating the damage factor of materials under the influence of plasma, 22-24(2010).

    [20] B. Bienkowska, V. A. Gribkov, M. Borowiecki et al. Plasma dynamics in PF-1000 device under full-scale energy storage: I. Pinch dynamics, shock-wave diffraction, and inertial electrode. J. Phys. D: Appl. Phys., 40, 1977-1989(2007).

    [21] V. N. Pimenov, L. I. Ivanov, S. A. Maslyaev et al. Surface and bulk processes in materials induced by pulsed ion and plasma beams at dense plasma focus devices. Nukleonika, 51, 71-78(2006).

    [22] V. N. Pimenov, S. A. Maslyaev, E. V. Demina et al. Damage and modification of materials produced by pulsed ion and plasma streams in dense plasma focus device. Nukleonika, 53, 111-121(2008).

    [23] J. Moreno, C. Pavez, L. Soto et al. Characterization of the axial plasma shock in a table top plasma focus after the pinch and its possible application to testing materials for fusion reactors. Phys. Plasmas, 21, 122703(2014).

    [24] O. V. Byrka, A. N. Bandura, I. E. Garkusha et al. Damage to preheated tungsten targets after multiple plasma impacts simulating iter elms. J. Nucl. Mater., 386, 127-131(2009).

    [25] V. A. Gribkov, L. I. Ivanov, V. N. Pimenov et al. Interaction of high temperature deuterium plasma streams and fast ion beams with stainless steels in dense plasma focus device. J. Phys. D: Appl. Phys., 36, 1817(2003).

    [26] V. Shirokova, T. Laas, A. Ainsaar et al. Comparison of damages in tungsten and tungsten doped with lanthanum-oxide exposed to dense deuterium plasma shots. J. Nucl. Matter, 435, 181-188(2013).

    [27] M. J. Inestrosa-Izurieta, E. Ramos-Moore, L. Soto. Morphological and structural effects on tungsten targets produced by fusion plasma pulses from a table top plasma focus. Nucl. Fusion, 55, 093011(2015).

    [28] S. Lee, A. Serban. Dimensions and lifetime of the plasma focus pinch. IEEE Trans. Plasma Sci., 24, 1101-1105(1996).

    [29] L. Soto, P. Silva, W. Kies, J. Moreno. Pinch evidence in a fast and small plasma focus of only tens of joules. Plasma Sources Sci. Technol., 13, 329(2004).

    [30] L. Soto. New trends and future perspectives on plasma focus research. Plasma Phys. Controlled Fusion, 47, A361(2005).

    [31] C. Pavez, L. Soto, A. Tarifeño et al. Studies on scalability and scaling laws for the plasma focus: Similarities and differences in devices from 1 MJ to 0.1 J. Plasma Sources Sci. Technol., 19, 055017(2010).

    [32] L. Soto, P. Silva, J. Moreno et al. Neutron emission from a fast plasma focus of 400 Joules. Appl. Phys. Lett., 83, 3269-3271(2003).

    [33] J. Pouzo, M. Milanese, R. Moroso. DD neutron yield in the 125 J dense plasma focus nanofocus. Eur. Phys. J. D, 27, 77-81(2003).

    [34] R. S. Rawat, R. Verma, P. Lee et al. Experimental study of neutron emission characteristics in a compact sub-kilojoule range miniature plasma focus device. Plasma Phys. Controlled Fusion, 51, 075008(2009).

    [35] M. Zambra, J. Pedreros, C. Pavez et al. Potentiality of a small and fast dense plasma focus as hard x-ray source for radiographic applications. Plasma Phys. Controlled Fusion, 54, 105018(2012).

    [36] V. Tang, J. L. Ellsworth, S. Falabella et al. Design and initial results from a kilojoule level dense plasma focus with hollow anode and cylindrically symmetric gas puff. Rev. Sci. Instrum., 85, 013504(2014).

    [37] H. Acuña, H. Bruzzone, M. Barbaglia et al. Experimental study of the hard x-ray emissions in a plasma focus of hundreds of joules. Plasma Phys. Controlled Fusion, 51, 045001(2009).

    [38] J. Moreno, P. Silva, L. Soto et al. A plasma focus driven by a capacitor bank of tens of joules. Rev. Sci. Instrum., 73, 2583-2587(2002).

    [39] T. Sakamoto, Y. Kobayashi, S. R. Mohanty et al. Miniature hybrid plasma focus extreme ultraviolet source driven by 10 kA fast current pulse. Rev. Sci. Instrum., 77, 043506(2006).

    [40] L. Soto, P. Silva, J. Moreno et al. Demonstration of neutron production in a table-top pinch plasma focus device operating at only tens of joules. J. Phys. D: Appl. Phys., 41, 205215(2008).

    [41] P. Lee, R. S. Rawat, R. Verma et al. Miniature plasma focus device as a compact hard x-ray source for fast radiography applications. IEEE Trans. Plasma Sci., 38, 652-657(2010).

    [42] R. Shukla, S. K. Sharma, P. Banerjee et al. Low voltage operation of plasma focus. Rev. Sci. Instrum., 81, 083501(2010).

    [43] M. Krishnan, C. James, B. L. Bures. A plasma focus electronic neutron generator. IEEE Trans. Plasma Sci., 40, 1082-1088(2012).

    [44] L. Soto, A. Tarifeño-Saldivia. Statistical characterization of the reproducibility of neutron emission of small plasma focus devices. Phys. Plasmas, 19, 092512(2012).

    [45] R. K. Rout, P. Mishra, R. Niranjan et al. Palm top plasma focus device as a portable pulsed neutron source. Rev. Sci. Instrum., 84, 063503(2013).

    [46] J. Moreno, C. Pavez, L. Soto et al. Nanofocus: An ultra-miniature dense pinch plasma focus device with submillimetric anode operating at 0.1 J. Plasma Sources Sci. Technol., 18, 015007(2008).

    [47] L. Soto, C. Pavez. Demonstration of x-ray emission from an ultraminiature pinch plasma focus discharge operating at 0.1 J nanofocus. IEEE Trans. Plasma Sci., 38, 1132-1135(2010).

    [48] H. N. Acuña, H. Bruzzone, M. O. Barbaglia et al. Electrical behavior of an ultralow-energy plasma-focus device. IEEE Trans. Plasma Sci., 42, 138-142(2014).

    [49] C. Pavéz, L. Soto, J. Moreno et al. Evidence of nuclear fusion neutrons in an extremely small plasma focus device operating at 0.1 Joules. Phys. Plasmas, 24, 082703(2017).

    [50] L. Soto, S. Davis, C. Pavez et al. Material studies for inertial fusion devices using pulsed plasma shocks from a repetitive table top plasma focus device, 187-203(2019).

    [51] R. Zwanzig. Nonequilibrium Statistical Mechanics(2001).

    [52] N. G. Van Kampen. Stochastic Processes in Physics and Chemistry(2007).

    [53] T. S. Noggle, O. S. Oen. Reduction in radiation damage due to channeling of 51-MeV iodine ions in gold. Phys. Rev. Lett., 16, 395(1966).

    [54] M. Hillert. Phase Equilibria, Phase Diagrams and Phase Transformations(2007).

    [55] S. Davis, A. Rosengren, B. Johansson, A. B. Belonoshko. Model for diffusion at the microcanonical superheating limit from atomistic computer simulations. Phys. Rev. B, 84, 064102(2011).

    [56] J. Fikar, R. Schäublin. Molecular dynamics simulation of radiation damage in bcc tungsten. J. Nucl. Matter, 386, 97-101(2009).

    [57] K. Nordlund, A. E. Sand, S. J. Zinkle et al. Primary radiation damage: A review of current understanding and models. J. Nucl. Matter, 512, 450-479(2018).

    [58] R. W. Balluffi, R. O. Simmons. Measurement of equilibrium concentrations of vacancies in copper. Phys. Rev., 129, 1533(1963).

    [59] S. Davis, M. J. Pozo, J. Peralta. Statistical distribution of thermal vacancies close to the melting point. Physica A, 457, 310-313(2015).

    [60] Y. P. Mitrofanov, R. A. Konchakov, E. V. Safonova et al. Experimental evidence for thermal generation of interstitials in a metallic crystal near the melting temperature. J. Phys.: Condens. Matter, 28, 215401(2016).

    [61] M. V. Sorokin, V. I. Dubinko, K. Schwartz et al. Kinetics of lattice defects induced in lithium fluoride crystals during irradiation with swift ions at room temperature. Nucl. Instrum. Methods Phys. Res., Sect. B, 466, 17-19(2020).

    [62] V. Kashcheyevs, V. N. Kuzovkov, E. A. Kotomin et al. Modeling of primary defect aggregation in tracks of swift heavy ions in LiF. Phys. Rev. B, 64, 144108(2001).

    [63] J. D. Torre, C.-C. Fu, F. Willaime et al. Multiscale modelling of defect kinetics in irradiated iron. Nat. Mater., 4, 68-74(2004).

    [64] R. P. Doerner, G. De Temmerman, J. H. Yu et al. The effect of transient temporal pulse shape on surface temperature and tungsten damage. Nucl. Fusion, 55, 093027(2015).

    [65] G. G. Van Eden, T. W. Morgan, H. J. Van Der Meiden et al. The effect of high-flux H plasma exposure with simultaneous transient heat loads on tungsten surface damage and power handling. Nucl. Fusion, 54, 123010(2014).

    [66] A. Rivera, D. Garoz, A. R. Páramo et al. Modelling the thermomechanical behaviour of the tungsten first wall in HiPER laser fusion scenarios. Nucl. Fusion, 56, 126014(2016).

    Sergio Davis, Felipe González-Cataldo, Gonzalo Gutiérrez, Gonzalo Avaria, Biswajit Bora, Jalaj Jain, José Moreno, Cristian Pavez, Leopoldo Soto. A model for defect formation in materials exposed to radiation[J]. Matter and Radiation at Extremes, 2021, 6(1): 015902
    Download Citation