• Chinese Optics Letters
  • Vol. 20, Issue 11, 110602 (2022)
Guoqiang Li1, Runze Lin1, Haichao Guo2、3, Pengfei Tian1、*, and Nan Chi1、**
Author Affiliations
  • 1Department of Communication Science and Engineering, Institute for Electric Light Sources, Key Laboratory for Information Science of Electromagnetic Waves (MoE), School of Information Science and Technology, Fudan University, Shanghai 200433, China
  • 2National Key Laboratory of Science and Technology on Space Microwave, Xi’an 710100, China
  • 3China Academy of Space Technology (Xi’an), Xi’an 710100, China
  • show less
    DOI: 10.3788/COL202220.110602 Cite this Article Set citation alerts
    Guoqiang Li, Runze Lin, Haichao Guo, Pengfei Tian, Nan Chi. Visible light communication system at 3.59 Gbit/s based on c-plane green micro-LED[J]. Chinese Optics Letters, 2022, 20(11): 110602 Copy Citation Text show less
    References

    [1] N. Chi, H. Haas, M. Kavehrad, T. D. Little, X.-L. Huang. Visible light communications: demand factors, benefits and opportunities [Guest Editorial]. IEEE Wirel. Commun., 22, 5(2015).

    [2] L. E. M. Matheus, A. B. Vieira, L. F. Vieira, M. A. Vieira, O. Gnawali. Visible light communication: concepts, applications and challenges. IEEE Commun. Surv. Tutor., 21, 3204(2019).

    [3] C. Wang, G. Li, F. Hu, Y. Zhao, J. Jia, P. Zou, Q. Lu, J. Chen, Z. Li, N. Chi. Visible light communication for vehicle to everything beyond 1 Gb/s based on an LED car headlight and a 2 × 2 PIN array. Chin. Opt. Lett., 18, 110602(2020).

    [4] K. J. Singh, Y.-M. Huang, T. Ahmed, A.-C. Liu, S.-W. H. Chen, F.-J. Liou, T. Wu, C.-C. Lin, C.-W. Chow, G.-R. Lin. Micro-LED as a promising candidate for high-speed visible light communication. Appl. Sci., 10, 7384(2020).

    [5] X. Zhou, P. Tian, C.-W. Sher, J. Wu, H. Liu, R. Liu, H.-C. Kuo. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog. Quantum Electron., 71, 100263(2020).

    [6] E. Xie, X. He, M. S. Islim, A. A. Purwita, J. J. McKendry, E. Gu, H. Haas, M. D. Dawson. High-speed visible light communication based on a III-nitride series-biased micro-LED array. J. Lightwave Technol., 37, 1180(2018).

    [7] S. Zhu, X. Chen, X. Liu, G. Zhang, P. Tian. Recent progress in and perspectives of underwater wireless optical communication. Prog. Quantum Electron., 73, 100274(2020).

    [8] A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, D. Feezell. Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5 GHz modulation bandwidth. IEEE Electron Device Lett., 39, 520(2018).

    [9] E. Xie, R. Bian, X. He, M. S. Islim, C. Chen, J. J. McKendry, E. Gu, H. Haas, M. D. Dawson. Over 10 Gbps VLC for long-distance applications using a GaN-based series-biased micro-LED array. IEEE Photon. Technol. Lett., 32, 499(2020).

    [10] M. Usman, M. Munsif, U. Mushtaq, A.-R. Anwar, N. Muhammad. Green gap in GaN-based light-emitting diodes: in perspective. Crit. Rev. Solid State Mat. Sci., 46, 450(2021).

    [11] Y. Zhao, H. Fu, G. T. Wang, S. Nakamura. Toward ultimate efficiency: progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN light-emitting diodes. Adv. Opt. Photonics, 10, 246(2018).

    [12] Y.-H. Chang, Y.-M. Huang, W. H. Gunawan, G.-H. Chang, F.-J. Liou, C.-W. Chow, H.-C. Kuo, Y. Liu, C.-H. Yeh. 4.343-Gbit/s green semipolar (20-21) µ-LED for high speed visible light communication. IEEE Photonics J., 13, 7300204(2021).

    [13] G.-R. Lin, H.-C. Kuo, C.-H. Cheng, Y.-C. Wu, Y.-M. Huang, F.-J. Liou, Y.-C. Lee. Ultrafast 2 × 2 green micro-LED array for optical wireless communication beyond 5 Gbit/s. Photonics Res., 9, 2077(2021).

    [14] G. Zhou, R. Lin, Z. Qian, X. Zhou, X. Shan, X. Cui, P. Tian. GaN-based micro-LEDs and detectors defined by current spreading layer: size-dependent characteristics and their multifunctional applications. J. Phys. D, 54, 335104(2021).

    [15] X. Zhao, B. Tang, L. Gong, J. Bai, J. Ping, S. Zhou. Rational construction of staggered InGaN quantum wells for efficient yellow light-emitting diodes. Appl. Phys. Lett., 118, 182102(2021).

    [16] Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, M. D. Dawson. Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes. J. Appl. Phys., 107, 013103(2010).

    [17] R. A. Shafik, M. S. Rahman, A. R. Islam. On the extended relationships among EVM, BER and SNR as performance metrics. International Conference on Electrical and Computer Engineering, 408(2006).

    [18] C. B. Ribeiro, M. L. de Campos, P. S. Diniz. Zero-forcing equalization for time-varying systems with memory. IEEE International Symposium on Circuits and Systems, V413(2004).

    [19] G. Li, P. Zou, F. Hu, C. Wang, G.-R. Lin, N. Chi. Frequency slicing pre-equalization scheme for laser diode based underwater visible light communication. Asia Communications and Photonics Conference, S4B.1(2020).

    [20] Y. Zhou, J. Shi, Z. Wang, J. Zhang, X. Huang, N. Chi. Maximization of visible light communication capacity employing quasi-linear preequalization with peak power limitation. Math. Probl. Eng., 2016, 6902152(2016).

    [21] R. Bian, I. Tavakkolnia, H. Haas. 15.73 Gb/s visible light communication with off-the-shelf LEDs. J. Lightwave Technol., 37, 2418(2019).

    Data from CrossRef

    [1] Fan Zhang, Jianghua Luo, Jun Li, Tianrui Lin, Chen Gong, Zhengyuan Xu. Effects of underwater swing nodes on water-to-air visible light communication. Applied Optics, 62, 4245(2023).

    Guoqiang Li, Runze Lin, Haichao Guo, Pengfei Tian, Nan Chi. Visible light communication system at 3.59 Gbit/s based on c-plane green micro-LED[J]. Chinese Optics Letters, 2022, 20(11): 110602
    Download Citation