• Advanced Imaging
  • Vol. 1, Issue 1, 011003 (2024)
Peng-Yu Jiang1、2、†, Zheng-Ping Li1、2、3, Wen-Long Ye1、2, Ziheng Qiu1、2, Da-Jian Cui3、4, and Feihu Xu1、2、3、*
Author Affiliations
  • 1Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei, China
  • 2Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai, China
  • 3Hefei National Laboratory, University of Science and Technology of China, Hefei, China
  • 4Quantum Information Chip & Device Chongqing Key Laboratory, Chongqing, China
  • show less
    DOI: 10.3788/AI.2024.10001 Cite this Article
    Peng-Yu Jiang, Zheng-Ping Li, Wen-Long Ye, Ziheng Qiu, Da-Jian Cui, Feihu Xu. High-resolution 3D imaging through dense camouflage nets using single-photon LiDAR[J]. Advanced Imaging, 2024, 1(1): 011003 Copy Citation Text show less
    References

    [1] J. J. Degnan. Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements. J. Geodyn., 34, 503(2002).

    [2] A. M. Wallace, A. McCarthy, C. J. Nichol et al. Design and evaluation of multispectral lidar for the recovery of arboreal parameters. IEEE Trans. Geosci. Remote Sens., 52, 4942(2013).

    [3] M. A. Albota, B. F. Aull, D. G. Fouche et al. Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays. Linc. Lab. J., 13, 351(2002).

    [4] R. M. Marino, W. R. Davis. Jigsaw: a foliage-penetrating 3D imaging laser radar system. Linc. Lab. J., 15, 23(2005).

    [5] D. M. Sheen, D. L. McMakin, T. E. Hall. Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Trans. Microw. Theory Tech., 49, 1581(2001).

    [6] V. M. Patel, J. N. Mait, D. W. Prather et al. Computational millimeter wave imaging: problems, progress, and prospects. IEEE Signal Process. Mag., 33, 109(2016).

    [7] F. Adib, D. Katabi. See through walls with WiFi!, 75(2013).

    [8] C. R. Karanam, Y. Mostofi. 3D through-wall imaging with unmanned aerial vehicles using WiFi, 131(2017).

    [9] V. Molebny, P. McManamon, O. Steinvall et al. Laser radar: historical prospective—from the east to the west. Opt. Eng., 56, 031220(2017).

    [10] A. McCarthy, R. J. Collins, N. J. Krichel et al. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting. Appl. Opt., 48, 6241(2009).

    [11] J. Rapp, J. Tachella, Y. Altmann et al. Advances in single-photon lidar for autonomous vehicles: working principles, challenges, and recent advances. IEEE Signal Process. Mag., 37, 62(2020).

    [12] C. Zhang, Y. Wang, Y. Yin et al. High precision 3D imaging with timing corrected single photon LiDAR. Opt. Express, 31, 24481(2023).

    [13] R. H. Hadfield, J. Leach, F. Fleming et al. Single-photon detection for long-range imaging and sensing. Optica, 10, 1124(2023).

    [14] D. Shin, F. Xu, F. N. Wong et al. Computational multi-depth single-photon imaging. Opt. Express, 24, 1873(2016).

    [15] J. Tachella, Y. Altmann, N. Mellado et al. Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers. Nat. Commun., 10, 1(2019).

    [16] A. Halimi, R. Tobin, A. McCarthy et al. Robust restoration of sparse multidimensional single-photon lidar images. IEEE Trans. Comput. Imaging, 6, 138(2019).

    [17] J. Tachella, Y. Altmann, X. Ren et al. Bayesian 3D reconstruction of complex scenes from single-photon lidar data. SIAM J. Imag. Sci., 12, 521(2019).

    [18] A. Kirmani, D. Venkatraman, D. Shin et al. First-photon imaging. Science, 343, 58(2014).

    [19] D. Shin, F. Xu, D. Venkatraman et al. Photon-efficient imaging with a single-photon camera. Nat. Commun., 7, 12046(2016).

    [20] J. Rapp, V. K. Goyal. A few photons among many: unmixing signal and noise for photon-efficient active imaging. IEEE Trans. Comput. Imaging, 3, 445(2017).

    [21] D. B. Lindell, M. O’Toole, G. Wetzstein. Single-photon 3D imaging with deep sensor fusion. ACM Trans. Graph., 37, 1(2018).

    [22] J. Peng, Z. Xiong, H. Tan et al. Boosting photon-efficient image reconstruction with a unified deep neural network. IEEE Trans. Pattern Anal. Mach. Intell., 45, 4180(2022).

    [23] R. Tobin, A. Halimi, A. McCarthy et al. Long-range depth profiling of camouflaged targets using single-photon detection. Opt. Eng., 57, 031303(2018).

    [24] M. Laurenzis, F. Christnacher, D. Monnin. Long-range three-dimensional active imaging with superresolution depth mapping. Opt. Lett., 32, 3146(2007).

    [25] A. M. Pawlikowska, A. Halimi, R. A. Lamb et al. Single-photon three-dimensional imaging at up to 10 kilometers range. Opt. Express, 25, 11919(2017).

    [26] Z. Li, E. Wu, C. Pang et al. Multi-beam single-photon-counting three-dimensional imaging lidar. Opt. Express, 25, 10189(2017).

    [27] Z.-P. Li, X. Huang, Y. Cao et al. Single-photon computational 3D imaging at 45 km. Photonics Res., 8, 1532(2020).

    [28] Z.-P. Li, J.-T. Ye, X. Huang et al. Single-photon imaging over 200 km. Optica, 8, 344(2021).

    [29] P.-Y. Jiang, Z.-P. Li, F. Xu. Compact long-range single-photon imager with dynamic imaging capability. Opt. Lett., 46, 1181(2021).

    [30] M. O’Toole, D. B. Lindell, G. Wetzstein. Confocal non-line-of-sight imaging based on the light-cone transform. Nature, 555, 338(2018).

    [31] X. Liu, I. Guillén, M. La Manna et al. Non-line-of-sight imaging using phasor-field virtual wave optics. Nature, 572, 620(2019).

    [32] C. Wu, J. Liu, X. Huang et al. Non–line-of-sight imaging over 1.43 km. Proc. Natl. Acad. Sci. U.S.A., 118, e2024468118(2021).

    [33] G. Satat, M. Tancik, R. Raskar. Towards photography through realistic fog, 1(2018).

    [34] R. Tobin, A. Halimi, A. McCarthy et al. Robust real-time 3D imaging of moving scenes through atmospheric obscurant using single-photon LiDAR. Sci. Rep., 11, 1(2021).

    [35] Y. Zhang, S. Li, J. Sun et al. Three-dimensional single-photon imaging through realistic fog in an outdoor environment during the day. Opt. Express, 30, 34497(2022).

    [36] H. Shi, G. Shen, H. Qi et al. Noise-tolerant bessel-beam single-photon imaging in fog. Opt. Express, 30, 12061(2022).

    [37] P.-Y. Jiang, Z.-P. Li, W.-L. Ye et al. Long range 3D imaging through atmospheric obscurants using array-based single-photon LiDAR. Opt. Express, 31, 16054(2023).

    [38] A. Maccarone, F. M. Della Rocca, A. McCarthy et al. Three-dimensional imaging of stationary and moving targets in turbid underwater environments using a single-photon detector array. Opt. Express, 27, 28437(2019).

    [39] A. Maccarone, K. Drummond, A. McCarthy et al. Submerged single-photon LiDAR imaging sensor used for real-time 3D scene reconstruction in scattering underwater environments. Opt. Express, 31, 16690(2023).

    [40] A. M. Wallace, J. Ye, N. J. Krichel et al. Full waveform analysis for long-range 3D imaging laser radar. EURASIP J. Adv. Signal Process., 2010, 896708(2010).

    [41] D. Bronzi, F. Villa, S. Tisa et al. Spad figures of merit for photon-counting, photon-timing, and imaging applications: a review. IEEE Sens. J., 16, 3(2015).

    [42] R. K. Henderson, N. Johnston, F. M. Della Rocca et al. A 192 x 128 time correlated SPAD image sensor in 40nm CMOS technology. IEEE J. Solid-State Circuits, 54, 1907(2019).

    [43] K. Morimoto, A. Ardelean, M.-L. Wu et al. Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica, 7, 346(2020).

    [44] I. Gyongy, S. W. Hutchings, A. Halimi et al. High-speed 3D sensing via hybrid-mode imaging and guided upsampling. Optica, 7, 1253(2020).

    [45] Z.-P. Li, X. Huang, P.-Y. Jiang et al. Super-resolution single-photon imaging at 8.2 kilometers. Opt. Express, 28, 4076(2020).

    [46] E. Wade, A. McCarthy, R. Tobin et al. Micro-scanning of a focal plane detector array in a single-photon LiDAR system for improved depth and intensity image reconstruction. Proc. SPIE, 12274, 1227404(2022).

    [47] J. Rapp, R. M. Dawson, V. K. Goyal. Improving lidar depth resolution with dither, 1553(2018).

    [48] A. Raghuram, A. Pediredla, S. G. Narasimhan et al. Storm: super-resolving transients by oversampled measurements, 1(2019).

    [49] S. C. Park, M. K. Park, M. G. Kang. Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag., 20, 21(2003).

    [50] C. Callenberg, A. Lyons, D. Brok et al. Super-resolution time-resolved imaging using computational sensor fusion. Sci. Rep., 11, 1689(2021).

    [51] Z. T. Harmany, R. F. Marcia, R. M. Willett. This is spiral-tap: sparse poisson intensity reconstruction algorithms—theory and practice. IEEE Trans. Image Process., 21, 1084(2011).

    [52] G. M. Martín, A. Halimi, R. K. Henderson et al. High-ambient, super-resolution depth imaging with a spad imager via frame re-alignment(2021).

    Peng-Yu Jiang, Zheng-Ping Li, Wen-Long Ye, Ziheng Qiu, Da-Jian Cui, Feihu Xu. High-resolution 3D imaging through dense camouflage nets using single-photon LiDAR[J]. Advanced Imaging, 2024, 1(1): 011003
    Download Citation