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Abstract. The single-photon sensitivity and picosecond time resolution of single-photon light detection and
ranging (LiDAR) can provide a full-waveform profile for retrieving the three-dimentional (3D) profile of the target
separated from foreground clutter. This capability has made single-photon LiDAR a solution for imaging
through obscurant, camouflage nets, and semitransparent materials. However, the obstructive presence of
the clutter and limited pixel numbers of single-photon detector arrays still pose challenges in achieving
high-quality imaging. Here, we demonstrate a single-photon array LiDAR system combined with tailored
computational algorithms for high-resolution 3D imaging through camouflage nets. For static targets, we
develop a 3D sub-voxel scanning approach along with a photon-efficient deconvolution algorithm. Using
this approach, we demonstrate 3D imaging through camouflage nets with a 3× improvement in spatial
resolution and a 7.5× improvement in depth resolution compared with the inherent system resolution. For
moving targets, we propose a motion compensation algorithm to mitigate the net’s obstructive effects,
achieving video-rate imaging of camouflaged scenes at 20 frame/s. More importantly, we demonstrate 3D
imaging for complex scenes in various outdoor scenarios and evaluate the advanced features of single-
photon LiDAR over a visible-light camera and a mid-wave infrared (MWIR) camera. The results point a
way forward for high-resolution real-time 3D imaging of multi-depth scenarios.
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1. Introduction
The ability to produce multi-layered three-dimentional (3D)
imagery is of utmost importance in various applications in re-
mote sensing[1,2] and rescue operations in surveillance and recon-
naissance[3,4]. The application scenarios include the viewing of
partially obscured targets like camouflage nets through semi-
transparent materials such as windows, and through distributed
reflective media like foliage. However, conventional two-
dimentional (2D) optical imaging approaches exhibit poor

performance in multi-layer scenarios with foreground clutter.
This is primarily due to the lack of depth information, which
prevents effective separation of the target from the foreground
clutter. In recent years, active imaging methods have been pro-
posed to tackle this challenge, including millimeter wave radar
[5,6] and Wi-Fi imaging[7,8]. These methods leverage the inherent
ability of mm-wave and Wi-Fi signals to penetrate the clutter in
front of the target. Nevertheless, it is important to note that the
resolution of these methods is relatively inferior compared to
optical approaches. As a result, a combination of high-resolu-
tion optical imaging and active imaging methods has positioned
light detection and ranging (LiDAR)[4,9] as a compelling technol-
ogy for imaging partially concealed scenarios.
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Single-photon LiDAR has witnessed rapid development be-
cause it can offer high temporal resolution and high sensitivity
by using time-correlated single-photon counting (TCSPC) tech-
niques[10–13]. The high temporal resolution permits excellent sur-
face-to-surface resolution for 3D imaging of multi-depth
scenarios[14]. The computational imaging algorithms have wit-
nessed remarkable progress in processing the single photon data
of complex scenes efficiently[15–17]. Moreover, photon-efficient
imaging algorithms[18–22] have shown good performance in deal-
ing with low return signals and high background noise, which
has been successfully demonstrated in several challenging sce-
narios including imaging through clutter[14,23], long-range depth
imaging[24–29], non-line-of-sight imaging[30–32], and imaging
through high levels of scattering media[33–39].

Researchers have foreseen the potential of single-photon
LiDAR in imaging of camouflaged scenarios and carried out ex-
periments. For instance, the Jigsaw airborne system demonstrated
the capability of detecting hidden objects using foliage-penetrating
3D imaging[4]. Wallace et al. reconstructed the depth profile of an
object behind a wooden trellis fence using a scanning sensor[40].
Tobin et al. presented a scanning transceiver system for imaging
targets through camouflaged nets[23]. These results employed a
scanning-based single-photon LiDAR system, which requires a
relatively long acquisition time. The emergence of single-photon
avalanche diode (SPAD) detector arrays significantly decreases
the acquisition time by collecting returned photons in a parallel
way[41–44]. Tachella et al. utilized a SPAD array to show the re-
markable real-time imaging through camouflage nets using plug-
and-play point cloud denoisers[15]. However, due to technological
constraints, SPAD array-based systems normally exhibit fewer
pixels and lower time resolution compared to single-point scan-
ning sensors, leading to reduced imaging resolution.

Here, we present a single-photon LiDAR system based on an
InGaAs/InP SPAD detector array to capture high-resolution 3D
profiles of static and moving targets concealed by double-layer
camouflage nets. For static targets, we reported a sub-voxel
scanning approach[45,46] combined with a 3D deconvolution al-
gorithm to realize high-resolution imaging. Using this approach,
we experimentally demonstrated 3D imaging through camou-
flage netting with a 3× improvement in spatial resolution
and a 7.5× improvement in depth resolution. The average signal
photons per pixel (PPP) is as few as 1.73 PPP, and the acquis-
ition time of each sub-voxel is 10 ms. For moving targets, we

proposed a motion detection and compensation algorithm to
mitigate the net’s obstructive effects, achieving real-time imag-
ing of camouflaged scenes at 20 frame/s. Different from Ref.
[15], our approach exploits the correlation between different
frames, which can avoid the loss of photons in some pixels
due to the occlusion of the camouflage nets. To verify our ap-
proach, we perform a series of experiments in daylight and night
for an outdoor complex scene and test the results through glass
door and camouflage nets using a single-photon LiDAR, a vis-
ible-light camera, and a mid-wave infrared (MWIR) camera.

2. Static Target: 3D Sub-Voxel Scanning
Approach

Constrained by factors such as material uniformity, circuit fab-
rication technology, data transmission, and cost, the format and
time resolution of SPAD detector arrays are currently limited,
preventing them from achieving high-resolution imaging in
multi-depth scenarios. To improve the depth resolution, Rapp
et al. introduced subtractive dither to the temporal quantization
of TCSPC[47], while Raghuram et al. achieved super-resolving
transients by oversampled measurements[48]. Inspired by these
works, we proposed the 3D sub-voxel scanning approach and
a tailored spatial-temporal photon-efficient deconvolution
algorithm (see Fig. 1), which can alleviate the block effect of
the foreground clutter and achieve super-resolution image
reconstruction with about 1 PPP. The sub-pixel scanning
method, initially employed in conventional cameras, captures
a series of low-resolution images during the sub-pixel displace-
ment process, which can be reconstructed to obtain a high-res-
olution image[49]. This method has also been applied in single-
photon imaging in recent years[50]. For instance, Li et al. utilized
the sub-pixel scanning approach to achieve super-resolution im-
aging beyond the diffraction limit over long distances[45,46].

To achieve 3D sub-voxel scanning, we employed a piezo tip/
tilt platform with a mirror and an arbitrary function generator
(AFG) for sub-pixel scanning in the spatial domain and sub-
bin scanning in the temporal domain, respectively. To realize
sub-pixel scanning, we set the inter-pixel scanning space smaller
than the size of the field of view (FoV) of one pixel. As shown in
Fig. 1(a), we illustrate an inter-pixel spacing of 1/2 FoV as an
example. The inter-pixel shift was performed in both the x and y
directions [Fig. 1(a)]. After scanning all the pixels, a high-
resolution image (320 pixel × 320 pixel) was computed by

Fig. 1 Schematic of the 3D sub-voxel scanning method. (a) An illustration of sub-pixel scanning
using the SPAD array with 2 pixel × 2 pixel and an inter-pixel spacing of 1/2 FoV. (b) A scheme of
sub-bin scanning in time domain with 3 steps. (c) One original voxel in the measurement matrix
can be expanded to 5 × 5 × 10 sub-voxels after fine scanning.
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combining frames of low-resolution images (64 pixel ×
64 pixel). In the temporal domain, considering that the time res-
olution of the time-to-digital converter (TDC) was 1 ns, the
histogram bin width during the imaging process was set to
1 ns, corresponding to a depth resolution of 15 cm. To improve
the depth resolution, we applied the AFG to perform sub-bin
scanning with a step size of 1/10 of the bin width between
the laser and the SPAD array [as shown in Fig. 1(b), an example
of 1/3 sub-bin scanning]. This enabled us to obtain 10 frames
with low temporal resolution, which could then be processed to
derive an image with high temporal resolution.

2.1. Spatial-temporal photon-efficient deconvolution
algorithm

To cooperate with our 3D sub-voxel scanning approach, we de-
velop a spatial-temporal photon-efficient deconvolutional algo-
rithm to compute the high-resolution image from the sub-voxel
scanning data with low signal levels at ∼1 PPP. The algorithm
takes the sub-voxel fine scanning process into account in the
forward model and combines a 3D deconvolution method to re-
trieve the sub-voxel information from the acquired data.

In a single-photon LiDAR system, the laser emits pulses to
periodically illuminate the target scene in either a raster-scanned
manner or a flood-illuminated way. Using the technique of
TCSPC, we measure the time-of-flight of each received photon
and form a histogram, which can be seen as the measured ma-
trix. Taking the sub-voxel scanning process into consideration,
the measured histogram in our experiment is spliced with all the
histograms with low resolution in three dimensions according to
their relative displacement. The integrated histogram is denoted
as Yx;y;t, where x; y; t represent the coordinates of the high-res-
olution matrix. We use RD�x; y; 2zc � to denote the reflectivity and
depth of the target scene, whose �x; y�th element is a vector with
only one nonzero entry to describe the (reflectivity, depth) pair
of the scene. Combining the inhomogeneous Poisson photon-
detection processing and our sub-voxel scanning process, the
histogram matrix Yx;y;t can be written as

Yx;y;t ∼ Poisson

�
IRF3D�x; y; t� ∗ RD

�
x; y;

2z
c

�
� B

�
; (1)

IRF3D�x; y; t� � PSF2D�x; y� ⊗ �Box�t� ∗ IRF�t��; (2)

where B is the background noise and IRF3D represents the 3D
instrument response function of our system combining the fine
scanning process. As described in Eq. (2), the term PSF2D is the
point spread function of our system, which is discretized with
the interval of the sub-pixel after fine scanning. Box�t� repre-
sents the box function with a width T equal to the temporal res-
olution of the TDC. IRF�t� represents the instrument response
function of our system in the temporal dimension, which
includes the timing jitter of the laser, detector, and electronics
circuit. The symbols ∗;⊗ denote the convolution and Cartesian
product operation, respectively. The IRF3D can be calibrated by
using a point object as the target. The size of IRF3D is dependent
on the inter-voxel spacing of the scanning process.

To obtain the estimation of RD�x; y; 2zc � from the measured
matrix Yx;y;t, we treat the inverse problem as an optimization
problem and adopt a deconvolutional convex optimization algo-
rithm based on the forward model. Let LRD�RD;Yx;y;t;

IRF3D; B� denote the negative log-likelihood function of RD de-
rived from Eq. (1). The inverse regularized convex problem can
be described as

minimize
RD

LRD�RD;Yx;y;t; IRF3D; B� � β · penalty�RD�
subject to RDi;j;k ≥ 0; ∀ i; j; k

: (3)

Here, the constraint RDi;j;k ≥ 0 comes from the non-negativ-
ity of the reflectivity of the target scene. It is worth mentioning
that our reconstruction framework is not tied to a particular
choice of regularizers, and in our experiment, we exploited total
variation (TV) constraints. We use the modified SPIRAL-TAP
solver[51] tailored for the 3D spatial-temporal domain to solve
this convex problem iteratively. To cooperate with the sub-voxel
scanning scheme, the spacing size of the kernel IRF3D needs to
be adjusted according to the size of the inter-voxel spacing.

2.2. Numerical simulation

The numerical simulations are provided here to evaluate
our sub-voxel scanning scheme. As shown in Fig. 2, we chose
a typical scene from the Middlebury dataset of size 370 pixel ×
463 pixel as our target scene and simulated the practical low-
light conditions by setting the signal-to-background ratio
(SBR) ratio to 0.2, and the inter-pixel spacing to 1/5 FoV, which
means a 5 × 5 PSF2D. Here, the PSF2D was set to be a standard
2D Gaussian distribution while in the experiment we calibrated
the PSF2D with an approximate point light source. As for the
IRF in temporal domain, we set it to be the convolution of a
standard 1D Gaussian distribution representing the system’s jit-
ter and a box function representing the 1/10 sub-bin scanning.

We conducted simulations using different numbers of de-
tected signal PPP, specifically 10, 5, and 1 PPP. We compared
the reconstruction results with four different methods: no scan-
ning, only 2D spatial scanning, 3D sub-voxel scanning using the
maximum likelihood (ML) algorithm, and our proposed
method. Quantitative results in terms of root mean square error
(RMSE) are presented at the bottom of each figure. As Fig. 2
shows, our algorithm outperforms the other methods in terms of
imaging quality at 10, 5, and 1 average photon counts and ex-
hibits the smallest RMSE.

3. Experimental Setup
The experimental setup, depicted in Fig. 3, is compactly con-
structed on an aluminum breadboard and organized in a bistatic
optical configuration. On the transmitting end, a pulsed fiber
laser operating at 1550 nm is employed as the light source.
The laser beam is transmitted through a fiber to provide flood
illumination on the target scene. The laser operates at a repeti-
tion rate of 25 kHz, delivering an average power of 50 mWand a
pulse width of 500 ps. The system exhibits a total jitter of ap-
proximately 1 ns. It is important to clarify that our method
would have better outcomes when the system jitter is lower than
the resolution of the TDC. Limited by the jitter of our laser, the
jitter of our system is slightly wider than the TDC resolution.
However, compared with the approach of histogram interpola-
tion, our method would still surpass it in results since the inter-
polated histogram will suffer from severe distortion when the
number of sample points is too small here. The utilization of
a 1550 nm laser offers the advantage of being eye-safe, ensuring
a safe distance for all ranges.
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At the receiving end, a 64 pixel × 64 pixel InGaAs/InP sin-
gle-photon detector array is utilized for receiving returned pho-
tons parallel. The pixel pitch is 50 μm, and each pixel is
equipped with a TDC providing a time resolution of 1 ns, cor-
responding to a distance resolution of 15 cm. The TDC modules
integrated into the array measure the time difference between
the start signal and photon events at each pixel. These measure-
ments are then transferred to the computer via a CameraLink
cable. The dark count rate of the detector is 2 kilocounts per
second, and the width of the detection gate can be adjusted from
0 to 4000 ns. For the receiving optics, a commercially available
camera lens (Thorlabs, MVL7000) is employed in the experi-
ment. The chosen focal length is 25 mm, combined with the
single-photon detector arrays, resulting in a field of view of
2 mrad per pixel. This field of view corresponds to a resolution
of 6 cm at a distance of 30 m, and the overall field of view of the
system is 3.8 m. To eliminate solar noise and ensure continuous
operation throughout the day, two filters are placed in front of
the lens. One filter is a 1300 nm long-pass filter, and the other is
a band-pass filter with a center wavelength of 1550.6 nm and a
bandwidth of 1.8 nm.

An aluminum-coated mirror affixed to the piezo tip/tilt plat-
form is adopted to achieve 2D sub-pixel scanning of the target.
The tip/tilt platform has a scanning range of 10 mrad and

achieves a closed-loop accuracy as high as 1 μrad, meeting
the requirements for our fine scanning accuracy. Both the laser
and SPAD detector arrays operate in external trigger mode, and
an AFG is employed in the system to provide a 25 kHz trigger
signal for time synchronization. Sub-bin scanning in the tempo-
ral domain is achieved by scanning the delay between these two
trigger signals.

In the experiment, a visible-light camera and an infrared cam-
era were employed for imaging as a comparison among the three
modalities. The visible-light camera (ASI294MC) has a resolu-
tion of 4144 pixel × 2822 pixel, with a pixel pitch of 4.63 μm,
and is equipped with a lens (Thorlabs, MVL25M23), which has
a focal length of 25 mm. The infrared camera utilized is a
cooled MWIR camera, which employs HgCdTe as the detector
material. It possesses a resolution of 640 pixel ×512 pixel, with
a pixel size of 15 μm. During the experiment, the focal length of
the infrared camera was set to 80 mm.

The experiment was conducted in an outdoor corridor where
two layers of camouflage nets were placed 30 m away from the
imaging system to achieve a dense occlusion of objects behind
the nets. As shown in Fig. 3, the complex scene behind the net
consists of letters, mannequins, sculptures, and other elements.
The farthest point in the scene was approximately 2.3 m away
from the net. Additionally, to assess the penetration capability of

Fig. 2 Numerical simulation of the proposed algorithm. The ground truth is a typical scene from
the Middlebury dataset. In our simulation, the SBR is set to 0.2, and the average number of de-
tected signal photons is set to 10, 5, and 1 PPP, respectively. The first column shows the results
without fine scanning. The second column shows the results with only 2D sub-pixel scanning and
conventional pixel-wise ML processing. The third column shows the results with 3D sub-voxel
scanning and pixel-wise ML processing. The last column shows the results with 3D sub-voxel
scanning and our photon-efficient 3D deconvolutional algorithm. Quantitative results in terms
of the RMSE are shown at the bottom of each figure. Clearly, our 3D sub-voxel method combined
with the proposed algorithm has a smaller RMSE and superior performance to exhibit the details of
the images.
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different cameras through complex occlusions, a glass door was
also used as an obstruction in the imaging path [shown in
Fig. 3(d)].

4. Results for the Static Target
According to our forward model mentioned in Section 2.1, we
first calibrated the 3D IRF3D of the system to obtain a precise
imaging model including the sub-voxel scanning process. We
placed a 2 mm × 2 mm square reflective sticker on a black plate
to simulate an ideal point source. The target was finely scanned
in the spatial domain with 1/5 sub-pixel spacing (step size of
400 μrad) and in the temporal domain with 1/10 sub-bin spacing
(step size of 100 ps). After this scanning process, we acquired
the IRF3D of the system corresponding to the process of 5 × 5 ×
10 sub-voxel scanning. The fitted spatial PSF PSF2D and tem-
poral response Box ∗ IRF are shown in Fig. 4.

After calibrating the system’s IRF, we validated the 3D
super-resolution imaging capability of our system by con-
ducting measurements on a self-made 3D resolution chart.
The photograph and dimensions of the resolution chart are illus-
trated in the figure below. We performed 5 × 5 × 10 step sub-
voxel scanning on the scene and applied the photon-efficient
3D deconvolution algorithm, incorporating the calibrated IRF.
To evaluate the effectiveness of our method, we compared the
results with those obtained without fine scanning and with only
2D sub-pixel scanning. Figure 4 presents the comparative
outcomes. From the results, it is evident that our method signifi-
cantly improves both spatial and temporal resolution, achieving
a spatial resolution of 2 cm and a depth resolution of 2 cm.
In comparison to the system’s inherent resolution, our method

provides a spatial resolution improvement of 3 times and a depth
resolution improvement of 7.5 times.

Subsequently, we employed our system to perform measure-
ments of the complex scene behind the camouflage nets under
different conditions and compared the imaging results with
those captured by the visible-light camera and MWIR camera.
During all the experiments, the laser power was set to 50 mW,
and the acquisition time for each frame of fine scanning was
10 ms, resulting in a total imaging time of 2.5 s. We first did
the experiment in daylight by imaging through the double-layer
camouflage nets, and the results of different modalities are illus-
trated in Fig. 5. The four images stand for the results of the
visible-light camera, MWIR camera, single-photon LiDAR
without fine scanning, and our proposed method. In Figs. 5(a)
and 5(b), most of the details of the scenario behind the nets are
missing since these two passive modalities lack the depth infor-
mation to separate the nets from the camouflaged scenarios. In
Fig. 5(d), it can be seen that our method exhibits superior capa-
bilities to achieve high-quality imaging through the camouflage
nets. The average photon count per pixel was 2.36 PPP, which
demonstrated the photon-efficient capability of our algorithm.

We further carried out the experiment in daylight with a glass
door closed as another obstruction. The results are shown in
Fig. 6. Compared with Fig. 5, it shows that the visible-light cam-
era and single-photon LiDAR are almost unaffected while the
MWIR camera failed to penetrate the glass, which means that
the application of the MWIR camera would be restricted when
there are glasses involved in the path. With the same PPP as low
as 1.73, the reconstructed result of our method in Fig. 6(d) is
much better than the results without fine scanning shown in
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Fig. 3 Schematic diagram of the experimental setup. (a) The schematic diagram of our exper-
imental setup. The complex scenario is hidden behind a double-layer camouflage net, which
is imaged by a visible-light camera, a MWIR camera, and our single-photon LiDAR system.
(b) The photograph of the hidden scene. (c) The photograph of our experimental setup. (d) The
photograph during the experiment with the glass door closed as an obstruction in the imaging path.
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Fig. 6(c), which demonstrates that our method is efficient for
dealing with the obstruction of the camouflage nets.

In Fig. 7, we show the results of the experiment at night to
demonstrate the system’s ability to operate effectively through-
out the whole day. It can be seen that the imaging quality of the

visible-light camera and the MWIR camera significantly de-
grades at night, while the reconstructed result of our method
is not affected. By comparing the three experiments, we dem-
onstrate 3D imaging for complex scenes in various outdoor sce-
narios throughout the whole day and evaluate the advanced
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Fig. 5 Experimental results of the static scenario behind the camouflage nets in daylight. The
results of the (a) visible-light camera, (b) MWIR camera, (c) single-photon LiDAR without fine
scanning, (d) single-photon LiDAR with 3D sub-voxel scanning, and (e) timing histogram of
the data in (d).
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features of single-photon LiDAR over both the visible-light
camera and MWIR camera.

5. Moving Target: Motion Compensation
Method

For moving targets, sub-voxel scanning can result in image blur-
ring and distortion due to the object’s movement. If the SPAD
detector array with 64 pixel × 64 pixel is directly used for

imaging dynamic targets through camouflage nets, each frame
will have a portion of the object blocked by the grid, and the
limited number of pixels can lead to poor results. However,
when the target is in motion, the blocked portion changes with
each frame. If it is possible to detect the moving targets (rigid
bodies) and their positions in each frame[52], the impact of grid
obstruction can be eliminated by using information collected
from multiple frames. Moreover, due to the high frame rate re-
quirements for imaging the moving target, the number of signal
photons in a single frame is limited, which means that the results
are easily affected by noise. The signal-to-noise ratio (SNR) of
single-photon LiDAR can be obtained as

SNR � ns����������������
ns � nb

p ; (4)

where ns is the number of signal photons while nb denotes the
number of background noise photons. From Eq. (4), it can be
seen that the SNR would be improved by

���
n

p
by averaging over

n frames as long as the inter-frame motion can be compensated
effectively. Here we developed a motion compensation method
for obstruction elimination and SNR improvement, by which the
motion states can be estimated and compensated before the low-
quality sub-images are combined into a high-resolution image.

5.1. Motion compensation algorithm

Pre-processing: We use an approximate maximum likelihood
estimator for each frame to perform the preliminary
reconstruction. First, for every pixel, the median of the bins
is calculated as the ambient level, which is denoted by b.
Taking consideration of the Poisson noise on the bin counts,
we set a threshold of h,

h � b� 3
���
b

p
: (5)

For each bin in the pixel, if the threshold h is exceeded, the
bin count is reserved as signal photons while others are dis-
carded as noise. After this denoising step, we estimate the depth
and reflectivity of each pixel using the following approximate
ML estimator[44]:

d �
Pdmax�Δt

t�dmax−Δt t ·max�0; ht − b�Pdmax�Δt
t�dmax−Δt max�0; ht − b�

·
c
2
; (6)

r �
Xdmax�Δt

t�dmax−Δt
max�0; ht − b�; (7)

where ht represents the histogram bin count at the given index of
t, dmax denotes the index of the bin with the maximum count,
and Δt is chosen to correspond to the width of the peak of the
target. After calculating the depth and reflectivity of each pixel,
we then obtain a depth map and a reflectivity map of every
frame, which are used for object segmentation.

Object Segmentation: By utilizing the depth and reflectivity
map of each frame acquired in the pre-processing step, we im-
plement the object segmentation into the 3D imaging results
with two steps: First, using the depth map, we simply divide
the pixels into groups with different depths, which can be seen
as splitting the 3D scenario into depth slices. In detail, we obtain
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3D sub-voxel scanning. (a) and (b) are applied with contrast
enhancement for better visual effects.
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Fig. 7 Experimental results of the static scenario behind the
camouflage nets at night. The results of the (a) visible-light cam-
era, (b) MWIR camera, (c) single-photon LiDAR without fine
scanning, and (d) single-photon LiDAR with 3D sub-voxel scan-
ning. (a) and (b) are applied with contrast enhancement for better
visual effects.
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the histogram of the depth map and found peaks in it. For each
peak, we calculate the bottom width and gather those pixels in
the depth map that have values within that interval. In our ex-
periment, we obtain two peaks and two depth slices. One con-
tains the mannequin while the other contains the man and the
ball. Second, for each depth slice, we further use the reflectivity
map and split pixels in each slice into groups according to the
difference in reflectivity. The specific operations are the same as
those in the first step. We use the differences in reflectivity to
split the ball and man, getting three separated objects. Up to this
point, we have obtained the boundary position of each object in
the vertical, horizontal, and depth axis, and we can segment each
object with a 3D box in the measurement histogram matrix.

Motion Estimation: For rigid objects, we utilize cross-
correlation to obtain the motion of the target. We directly per-
form auto-correlation using the 3D matrices obtained from the
compensated frames and the reference frame. The 3D matrices
are first subjected to denoising processing used in the pre-
processing step to remove most of the noise. The formula is
as follows:

C � DFT−1�DFT�Href�� · DFT�Hc��; (8)

where C is the correlation function, DFT denotes the 3D discrete
Fourier transform,Href represents the measured histogram of the
reference frame, and Hc represents the measured histogram of
the current frame. Considering the limited motion velocity, we
can only search the voxel near the position of the object in the
previous frame, which would avoid ambiguity with similar ob-
jects and reduce the computation cost. At present, we do not
cope with the deformable objects. In the future, we intend to
utilize state-of-art motion estimation algorithms such as the
block-matching algorithm and optical flow algorithm to deal
with more complex motion.

Image Reconstruction with Motion Compensation: After
object segmentation and motion estimation, we can extract the
box containing objects from the reconstructed image, and then
we perform inverse motion transformation to keep the position
of the object consistent with the reference state. After superim-
posing enough image subsets, we use the same method in the
pre-processing step to recover the depth and reflectivity map
because the signals and SNR are high after compensation.
Thus, a high-resolution image, which we call the reference im-
age, can be reconstructed.

Data Super-Resolution: The last optional step relates to
data super-resolution to improve the spatial quality of the im-
ages. Since the acquired data from the SPAD detector array
is at the relatively low spatial resolution of 64 pixel × 64 pixel,
it is, therefore, necessary to simulate an improved spatial reso-
lution using super-resolution approaches to improve visualiza-
tion. Inspired by the depth maximum a posteriori estimate,
super-resolution can be performed using a combination of a
weighted median operator with a point cloud filtering step.
As for implementation, we used the approach described in
Ref. [34], which can be divided into three steps including inter-
polation, edge improvement, and filtered smoothing.

The framework of the motion compensation algorithm is
described in Algorithm 1.

5.2. Experiments and results

The experimental setup remains consistent, as illustrated in
Fig. 3. For moving targets, we employed the motion compen-
sation algorithm, which was discussed in the previous section.
The scene behind the camouflage nets included a mannequin
moving from right to left, which was positioned approximately
1.5 m away from the net, as well as a person bouncing a basket-
ball at a distance of about 3 m. During the experiment, we col-
lected data over a period of 10 s, which amounted to 250,000
frames for the SPAD detector array. A total of 1250 frames of
data were processed to generate a single processed image,
resulting in an imaging frame rate of 20 frame/s.

The existence of the double-layer camouflage nets severely
limited the number of signal photons in each frame of the
image, particularly in regions with low reflectivity where
the signal was substantially attenuated. Directly applying the
Poisson maximum likelihood estimation algorithm to each
frame of image data would result in poor image reconstruction
quality. Therefore, we employed the motion compensation algo-
rithm described in the previous section to process the data.
Specifically, we first performed a pre-processing step on the cur-
rent frame and conducted target segmentation of the scene using
the processed image and the signal histogram. This allowed us
to isolate and extract targets such as the mannequin, body, arms,
and ball. Then we calculated the displacement of each target
relative to the previous n frames using Eq. (8) and subsequently
applied motion compensation to each component accordingly.
This compensation step accounted for the motion and helped
align the targets in subsequent frames, improving the overall
image quality. Finally, we upsampled the compensated frames
from 64 pixel × 64 pixel to 256 pixel × 256 pixel by adopting
the super-resolution algorithm for dynamic targets, which

Algorithm 1 Motion compensation algorithm
1: Input:

2: Histogram of current frame Hk , number of frames for
compensation n

3: Pre-processing step:

4: Denoise with the threshold hk defined in Eq. (5)

5: Estimate dk , rk from Hk using Eqs. (6) and (7)

6: Object segmentation:

7: Segment each object in depth and reflectivity map then project
to the histogram

8: Motion estimation:

9: Conduct cross-correlation between Hk and Hk−n (the
histogram of frame k-n to frame k-1) using Eq. (8) and obtain
the motion matrix Tk for all segmented objects

10: Image reconstruction:

11: Obtain the histogram after motion compensation H̃k � Hk �
TkHk

12: Compute d̃k and r̃k using Eqs. (6) and (7)

13: Super-resolution step:

14: Compute d̃HR
k and r̃HRk with interpolation, self-weight median,

and smoothing operations

15: Output:

16: d̃HR
k , r̃HRk
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incorporates interpolation, self-guided weighted-median filter-
ing, and smoothing filtering techniques to enhance the details
and overall resolution of the reconstructed image. By

implementing these steps, we aimed to overcome the limitations
imposed by the double-layer camouflage nets and improve the
quality and clarity of the final images.

Fig. 8 Experimental results of the moving scenario behind the camouflage nets. (a) The photo-
graphs of the scene behind the camouflage nets taken from the back. (b) The photographs are
captured by a MWIR camera. (c) The photographs are captured by a visible-light camera. (d) The
reconstructed 3D profile of the multi-layer scenario. The movement of the mannequin and the
basketball can be seen in the image sequences. The boxes of different colors indicate the seg-
mented objects in our experiment.
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We extracted four frames from the processed video (please
refer to Video 1) for presentation, as depicted in Fig. 8. The first
column displays images extracted from the video captured by a
visible-light camera, the second column shows images from the
MWIR camera, and the third column presents the reconstructed
3D profile acquired from the SPAD array. From the results, we
can see that the visible-light camera exhibits poor performance
in imaging the human body with low reflectivity, while the
MWIR camera performs poorly in capturing the mannequin
with low temperatures. However, our approach using single-
photon LiDAR achieves high-resolution 3D imaging of all tar-
gets behind the net, providing significant advantages compared
to the previous two cameras, which verifies the effectiveness of
our motion compensation algorithm for single-photon imaging
through the camouflage nets.

As shown in Fig. 9, we also compared our algorithm with the
cross-correlation method and the real-time plug-and-play deno-
iser[15]. Due to the obstruction of the dense camouflaged nets,
many of the pixels contain few photon signals especially in
the region with low reflectivity (the legs of the man wearing
black pants), which leads to the loss of information in the re-
constructed results shown in Figs. 8(a) and 8(b). Our proposed
motion compensation algorithm mitigates the net’s obstructive
effect using spatio-temporal correlation between frames. The
reconstruction result of our algorithm is more complete and con-
tinuous, which also captures additional details in the contours of
the 3D target.

6. Conclusion
This study presents reconstructions of high-resolution 3D
profiles for both static and moving targets that are obscured by
camouflage nets. For static targets, we developed a sub-voxel
scanning approach combined with a photon-efficient 3D decon-
volution algorithm, which was demonstrated through numerical
and experimental analysis. In our experiments, we achieved a
3× improvement in spatial resolution and a 7.5× improvement
in depth resolution. The captured results, obtained in both day-
light and night conditions, highlight the adaptability of our sys-
tem for all-time applications. Moreover, our imaging results
exhibit significant advantages compared to visible-light cameras
and MWIR cameras. Regarding moving targets, we proposed a
3D motion compensation algorithm, enabling the capture of
high-quality 3D video at 20 frame/s through camouflage nets.

The method presented in this paper demonstrates the potential
for implementing single-photon LiDAR in remote sensing, res-
cue operations, and defense, particularly when targets of interest
are partially concealed or viewed through semitransparent sur-
faces, such as windows. Future work will focus on reducing the
processing time for real-time applications.
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