• Acta Optica Sinica
  • Vol. 39, Issue 6, 0634001 (2019)
Geng Niu1、2, Junbiao Liu1、2、*, Weixia Zhao1, Li Han1、2, and Yutian Ma1、2
Author Affiliations
  • 1 Laboratory of Superconductors and New Materials, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • 2 University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/AOS201939.0634001 Cite this Article Set citation alerts
    Geng Niu, Junbiao Liu, Weixia Zhao, Li Han, Yutian Ma. Effect of Focused Bombarding Electron Beam on Transmission Microfocus X-Ray Source[J]. Acta Optica Sinica, 2019, 39(6): 0634001 Copy Citation Text show less
    References

    [1] Moreno-Atanasio R, Williams R A, Jia X D. Combining X-ray microtomography with computer simulation for analysis of granular and porous materials[J]. Particuology, 8, 81-99(2010). http://d.wanfangdata.com.cn/Periodical_zgklxb-e201002001.aspx

         Moreno-Atanasio R, Williams R A, Jia X D. Combining X-ray microtomography with computer simulation for analysis of granular and porous materials[J]. Particuology, 8, 81-99(2010). http://d.wanfangdata.com.cn/Periodical_zgklxb-e201002001.aspx

    [2] Gui J B, Hu Z L, Zhou Y et al. Technology development of micro-CT with high spatial resolution[J]. Computerized Tomography Theory and Applications, 18, 106-116(2009).

         Gui J B, Hu Z L, Zhou Y et al. Technology development of micro-CT with high spatial resolution[J]. Computerized Tomography Theory and Applications, 18, 106-116(2009).

    [3] Yan J, Jiang S E, Su M et al. The application of phase contrast imaging to ICF multi-shell capsule diagnosis[J]. Acta Physica Sinica, 61, 068703(2012).

         Yan J, Jiang S E, Su M et al. The application of phase contrast imaging to ICF multi-shell capsule diagnosis[J]. Acta Physica Sinica, 61, 068703(2012).

    [4] Liu J B, Xi X Q, Han Y et al. A new scattering artifact correction method based on K-N formula for cone-beam computed tomography[J]. Acta Optica Sinica, 38, 1134001(2018).

         Liu J B, Xi X Q, Han Y et al. A new scattering artifact correction method based on K-N formula for cone-beam computed tomography[J]. Acta Optica Sinica, 38, 1134001(2018).

    [5] Wang K G, Niu H B, Li J et al. A new protable X-ray source with micro-beam[J]. Acta Photonica Sinica, 33, 672-676(2004).

         Wang K G, Niu H B, Li J et al. A new protable X-ray source with micro-beam[J]. Acta Photonica Sinica, 33, 672-676(2004).

    [6] Ihsan A, Heo S H, Cho S O. Optimization of X-ray target parameters for a high-brightness microfocus X-ray tube[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 264, 371-377(2007). http://www.sciencedirect.com/science/article/pii/S0168583X07014899

         Ihsan A, Heo S H, Cho S O. Optimization of X-ray target parameters for a high-brightness microfocus X-ray tube[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 264, 371-377(2007). http://www.sciencedirect.com/science/article/pii/S0168583X07014899

    [7] Li B L, Zhang P Y, Li B et al. Optimized iterative method for projection decomposition of X-ray dual-energy computed tomography[J]. Acta Optica Sinica, 37, 1034001(2017).

         Li B L, Zhang P Y, Li B et al. Optimized iterative method for projection decomposition of X-ray dual-energy computed tomography[J]. Acta Optica Sinica, 37, 1034001(2017).

    [8] Li Y G, Zhou W H, Huang L F et al. Theoretical simulation of thermal behavior in transient heat loads testing of plasma-facing materials[J]. Fusion Engineering and Design, 86, 2812-2820(2011). http://www.sciencedirect.com/science/article/pii/S0920379611004078

         Li Y G, Zhou W H, Huang L F et al. Theoretical simulation of thermal behavior in transient heat loads testing of plasma-facing materials[J]. Fusion Engineering and Design, 86, 2812-2820(2011). http://www.sciencedirect.com/science/article/pii/S0920379611004078

    [9] Trincavelli J, Castellano G. The prediction of thick target electron bremsstrahlung spectra in the 0.25-50 keV energy range[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 1-8(2008). http://www.sciencedirect.com/science/article/pii/S0584854707003953

         Trincavelli J, Castellano G. The prediction of thick target electron bremsstrahlung spectra in the 0.25-50 keV energy range[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 1-8(2008). http://www.sciencedirect.com/science/article/pii/S0584854707003953

    [10] Zheng L, Liu H R, Sun B L et al. Optimization of transmission-type anode target in microfocus X-ray tube[J]. Chinese Journal of Vacuum Science and Technology, 35, 1443-1448(2015).

         Zheng L, Liu H R, Sun B L et al. Optimization of transmission-type anode target in microfocus X-ray tube[J]. Chinese Journal of Vacuum Science and Technology, 35, 1443-1448(2015).

    [11] Ma Y T, Liu J B, Huo R L et al. Research on the preparation and performance of tungsten-aluminum transmission target for micro-computed tomography by magnetron sputtering[J]. Acta Metallurgica Sinica, 51, 1416-1424(2015).

         Ma Y T, Liu J B, Huo R L et al. Research on the preparation and performance of tungsten-aluminum transmission target for micro-computed tomography by magnetron sputtering[J]. Acta Metallurgica Sinica, 51, 1416-1424(2015).

    [12] Ihsan A, Heo S H, Cho S O. A microfocus X-ray tube based on a microstructured X-ray target[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267, 3566-3573(2009). http://www.sciencedirect.com/science/article/pii/S0168583X09009070

         Ihsan A, Heo S H, Cho S O. A microfocus X-ray tube based on a microstructured X-ray target[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267, 3566-3573(2009). http://www.sciencedirect.com/science/article/pii/S0168583X09009070

    [13] Hyun J K, Ercius P, Muller D A. Beam spreading and spatial resolution in thick organic specimens[J]. Ultramicroscopy, 109, 1-7(2008). http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=457271&fulltextType=AB&fileId=S1431927606069200

         Hyun J K, Ercius P, Muller D A. Beam spreading and spatial resolution in thick organic specimens[J]. Ultramicroscopy, 109, 1-7(2008). http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=457271&fulltextType=AB&fileId=S1431927606069200

    [14] Xu X D, Zhou B, Guo J C et al. Monte Carlo simulation of interaction of electrons with anode in microstructure X-ray tubes[J]. Chinese Journal of Computational Physics, 35, 95-102(2018).

         Xu X D, Zhou B, Guo J C et al. Monte Carlo simulation of interaction of electrons with anode in microstructure X-ray tubes[J]. Chinese Journal of Computational Physics, 35, 95-102(2018).

    [15] Zhang X, Robinson V S, Raber T R et al. THERMAL analysis of high-power X-ray target: scaling effects[J]. Proceedings of SPIE, 9590, 95900G(2015). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2432508

         Zhang X, Robinson V S, Raber T R et al. THERMAL analysis of high-power X-ray target: scaling effects[J]. Proceedings of SPIE, 9590, 95900G(2015). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2432508

    [16] Saeed Raza H, Jin Kim H, Nam Kim H et al. Angle dependent focal spot size of a conical X-ray target[J]. Applied Radiation and Isotopes, 96, 6-12(2015). http://www.sciencedirect.com/science/article/pii/S0969804314003546

         Saeed Raza H, Jin Kim H, Nam Kim H et al. Angle dependent focal spot size of a conical X-ray target[J]. Applied Radiation and Isotopes, 96, 6-12(2015). http://www.sciencedirect.com/science/article/pii/S0969804314003546

    [17] Hu J W, Lü W, An B et al. Review on simulation methods of micro focal spot X-ray tubes' electron emission system. [C]//2014 15th International Conference on Electronic Packaging Technology, August 12-15, 2014, Chengdu, China. New York: IEEE, 1502-1506(2014).

         Hu J W, Lü W, An B et al. Review on simulation methods of micro focal spot X-ray tubes' electron emission system. [C]//2014 15th International Conference on Electronic Packaging Technology, August 12-15, 2014, Chengdu, China. New York: IEEE, 1502-1506(2014).

    [18] Salamon M, Hanke R, Krüger P et al. Comparison of different methods for determining the size of a focal spot of microfocus X-ray tubes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 591, 54-58(2008). http://www.sciencedirect.com/science/article/pii/S0168900208004002

         Salamon M, Hanke R, Krüger P et al. Comparison of different methods for determining the size of a focal spot of microfocus X-ray tubes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 591, 54-58(2008). http://www.sciencedirect.com/science/article/pii/S0168900208004002

    [19] Korenev S. Target for production of X-rays. [C]//Proceedings of the 2003 Particle Accelerator Conference, May 12-16, 2003, Portland, OR, USA. New York: IEEE, 1614-1615(2003).

         Korenev S. Target for production of X-rays. [C]//Proceedings of the 2003 Particle Accelerator Conference, May 12-16, 2003, Portland, OR, USA. New York: IEEE, 1614-1615(2003).

    Geng Niu, Junbiao Liu, Weixia Zhao, Li Han, Yutian Ma. Effect of Focused Bombarding Electron Beam on Transmission Microfocus X-Ray Source[J]. Acta Optica Sinica, 2019, 39(6): 0634001
    Download Citation