• Infrared and Laser Engineering
  • Vol. 51, Issue 3, 20220104 (2022)
Lipeng Xia1、2、3, Yuheng Liu1、2、3, Peiji Zhou1、*, and Yi Zou1
Author Affiliations
  • 1School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 2Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 201210, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/IRLA20220104 Cite this Article
    Lipeng Xia, Yuheng Liu, Peiji Zhou, Yi Zou. Advances in mid-infrared integrated photonic sensing system (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220104 Copy Citation Text show less
    References

    [1] Y Zou, S Chakravarty, C-J Chung, et al. Mid-infrared silicon photonic waveguides and devices [Invited]. Photonics Research, 6, 254-276(2018).

    [2] H Lin, B Sun, H Ma, et al. Review of mid-infrared on-chip integrated photonics (Invited). Infrared and Laser Engineering, 51, 20211111(2022).

    [3] H Ma, H Yang, B Tang, et al. Passive devices at 2 μm wavelength on 200 mm CMOS compatible silicon photonics platform [Invited]. Chinese Optics Letters, 19, 071301(2021).

    [4] Lambrecht A, Schmitt K. infrared gassensing systems applications [C] infrared Optoelectronics, 2020: 661715.

    [5] A Schliesser, N Picqué, T W Hänsch. Mid-infrared frequency combs. Nature Photonics, 6, 440-449(2012).

    [6] S Neetesh, C B Alvaro, D Hudson, et al. Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide. Optics Letters, 41, 5776-5779(2016).

    [7] L Dong, F K Tittel, C Li, et al. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing. Optics Express, 24, A528-A535(2016).

    [8] F Ottonello-Briano, C Errando-herranz, H Rdjegrd, et al. Carbon dioxide absorption spectroscopy with a mid-infrared silicon photonic waveguide. Optics Letters, 45, 109-112(2019).

    [9] Y Wang, H Shu, X Han. High-precision silicon-based integrated optical temperature sensor. Chinese Optics, 14, 1355-1361(2021).

    [10] D Rodrigo, O Limaj, D Janner, et al. Mid-infrared plasmonic biosensing with graphene. Science, 349, 165-168(2015).

    [11] H Moser, W Pölz, J P Waclawek, et al. Implementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream. Analytical and Bioanalytical Chemistry, 409, 729-739(2016).

    [12] M Vainio, L Halonen. Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy. Physical Chemistry Chemical Physics, 18, 4266-4294(2016).

    [13] S Kim. Novel air temperature measurement using midwave hyperspectral Fourier transform infrared imaging in the carbon dioxide absorption band. Remote Sensing, 12, 1860(2020).

    [14] S Yang, X Yan, H Qin, et al. Mid-infrared compressive hyperspectral imaging. Remote Sensing, 13, 741(2021).

    [15] R Stanley. Plasmonics in the mid-infrared. Nature Photon, 6, 409-411(2012).

    [16] A L Gaeta, M Lipson, T J Kippenberg. Photonic-chip-based frequency combs. Nature Photonics, 13, 158-169(2019).

    [17] D Li, H Zhou, X Hui, et al. Multifunctional chemical sensing platform based on dual-resonant infrared plasmonic perfect absorber for on-chip detection of poly (ethyl cyanoacrylate). Advanced Science, 8, 2101879(2021).

    [18] B Henderson, A Khodabakhsh, M Metsälä, et al. Laser spectroscopy for breath analysis: towards clinical implementation. Applied Physics B, 124, 161(2018).

    [19] R Soref. Mid-infrared photonics in silicon and germanium. Nature Photonics, 4, 495-497(2010).

    [20] Q Chen, X Nan, W Liang, et al. Research progress of on-chip integrated optical sensing technology (Invited). Infrared and Laser Engineering, 51, 20210671(2022).

    [21] G Z Mashanovich, C J Mitchell, J S Penades, et al. Germanium mid-infrared photonic devices. Journal of Lightwave Technology, 35, 624-630(2017).

    [22] P T Lin, H Jung, L C Kimerling, et al. Low-loss aluminium nitride thin film for mid-infrared microphotonics. Laser & Photonics Reviews, 8, L23-L28(2014).

    [23] P Ma, D-Y Choi, Y Yu, et al. Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared. Optics Express, 21, 29927-29937(2013).

    [24] H Lin, Y Song, Y Huang, et al. Chalcogenide glass-on-graphene photonics. Nature Photonics, 11, 798-805(2017).

    [25] B Mizaikoff. Waveguide-enhanced mid-infrared chem/bio sensors. Chemical Society Reviews, 42, 8683-8699(2013).

    [26] T Hu, B Dong, X Luo, et al. Silicon photonic platforms for mid-infrared applications [Invited]. Photonics Research, 5, 417-430(2017).

    [27] X Liu, S Cheng, H Liu, et al. A survey on gas sensing technology. Sensors, 12, 9635-9665(2012).

    [28] H Jane, P T Ralph. Optical gas sensing: A review. Measurement Science & Technology, 24(1), 012004(2013).

    [29] T V Dinh, I Y Choi, Y S Son, et al. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sensors and Actuators, B Chemical, 231, 529-538(2016).

    [30] A E Cetin, A Coskun, B C Galarreta, et al. Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light: Science & Applications, 3, e122(2014).

    [31] A Brolo. Plasmonics for future biosensors. Nature Photonics, 6, 709-713(2012).

    [32] L Tombez, E J Zhang, J S Orcutt, et al. Methane absorption spectroscopy on a silicon photonic chip. Optica, 4, 1322-1325(2017).

    [33] J Jágerská, P Jouy, B Tuzson, et al. Simultaneous measurement of NO and NO2 by dual-wavelength quantum cascade laser spectroscopy. Optics Express, 23, 1512-1522(2015).

    [34] B Schwarz, P Reininger, D Ristanić, et al. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures. Nature Communications, 5, 4085(2014).

    [35] R Shankar, R Leijssen, I Bulu, et al. Mid-infrared photonic crystal cavities in silicon. Optics Express, 19, 5579-5586(2011).

    [36] Q Liu, J M Ramirez, V Vakarin, et al. Mid-infrared sensing between 5.2 and 6.6 µm wavelengths using Ge-rich SiGe waveguides [Invited]. Optical Materials Express, 8, 1305-1312(2018).

    [37] W Li, P Anantha, K H Lee, et al. Spiral waveguides on germanium-on-silicon nitride platform for mid-IR sensing applications. IEEE Photonics Journal, 10, 1-7(2018).

    [38] J Kang, M Takenaka, S Takagi. Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits. Optics Express, 24, 11855-11864(2016).

    [39] T-H Xiao, Z Zhao, W Zhou, et al. Mid-infrared high-Q germanium microring resonator. Optics Letters, 43(12): 2885-2888(2018).

    [40] J WU, G YUE, W CHEN, et al. On-chip optical gas sensors based on group-IV materials. ACS Photonics, 7, 2923-2940(2020).

    [41] C Wang, L Yin, L Zhang, et al. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors, 10(3), 2088-2106(2010).

    [42] Y-c Chang, P Wägli, V Paeder, et al. Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip. Lab on a Chip, 12, 3020-3023(2012).

    [43] P Lin, V Singh, J Hu, et al. Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides. Lab on a Chip, 13(11): 2161-2166(2013).

    [44] Zou Y, Vijayraghavan K, Wray P, et al. Monolithically integrated quantum cade lasers, detects dielectric waveguides at 9.5µm f farinfrared labonchip chemical sensing[C]Proceedings of the CLEO, 2015: STu4I.2.

    [45] G M Hale, M R Querry. Optical constants of water in the 200-nm to 200-microm wavelength region. Applied Optics, 12, 555-563(1973).

    [46] M Nedeljkovic, A Z Khokhar, Y Hu, et al. Silicon photonic devices and platforms for the mid-infrared. Optical Materials Express, 3, 1205-1214(2013).

    [47] J S Penades, A Khokhar, M Nedeljkovic, et al. Low-loss mid-infrared SOI slot waveguides. IEEE Photonics Technology Letters, 27, 1197-1199(2015).

    [48] P T Lin, S W Kwok, H Y G Lin, et al. Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing. Nano Letters, 14(1), 231-238(2014).

    [49] P Patimisco, V Spagnolo, M S Vitiello, et al. Low-loss hollow waveguide fibers for mid-infrared quantum cascade laser sensing applications. Sensors, 13, 1329-1340(2013).

    [50] S Zheng, H Cai, L Xu, et al. Silicon substrate-integrated hollow waveguide for miniaturized optical gas sensing. Photonics Research, 10, 261-268(2022).

    [51] J Petruci, A Wilk, A A Cardoso, et al. A hyphenated preconcentrator-infrared-hollow-waveguide sensor system for N2O sensing. Scientific Reports, 8, 5909(2018).

    [52] A Vasiliev, A Malik, M Muneeb, et al. On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators. ACS Sensors, 1(11), 1301-1307(2016).

    [53] L N Mario, T Benedetto, M Tommaso, et al. Recent advances in gas and chemical detection by Vernier effect-based photonic sensors. Sensors, 14, 4831-4855(2014).

    [54] L Jin, M Li, J J He. Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect. Optics Communications, 284, 156-159(2011).

    [55] L Ren, X Wu, M Li, et al. Ultrasensitive label-free coupled optofluidic ring laser sensor. Optics Letters, 37, 3873-3875(2012).

    [56] N A Yebo, P Lommens, Z Hens, et al. An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film. Optics Express, 18, 11859-11866(2010).

    [57] T H Stievater, M W Pruessner, D Park, et al. Trace gas absorption spectroscopy using functionalized microring resonators. Optics Letters, 39, 969-972(2014).

    [58] B Troia, A Z Khokhar, M Nedeljkovic, et al. Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared. Optics Express, 22, 23990-24003(2014).

    [59] Y Chang, B Dong, Y Ma, et al. Vernier effect-based tunable mid-infrared sensor using silicon-on-insulator cascaded rings. Optics Express, 28, 6251-6260(2020).

    [60] C F Carlborg, K B Gylfason, A Kamierczak, et al. A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips. Lab on a Chip, 10, 281-290(2010).

    [61] A Ksendzov, Y Lin. Integrated optics ring-resonator sensors for protein detection. Optics Letters, 30, 3344-3346(2005).

    [62] C J Smith, R Shankar, M Laderer, et al. Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators. Optics Express, 23, 5491-5499(2015).

    [63] Y Chen, H Lin, J Hu, et al. Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing. ACS Nano, 8, 6955-6961(2014).

    [64] W-C Lai, S Chakravarty, X Wang, et al. Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water. Applied Physics Letters, 98, 023304(2011).

    [65] W-C Lai, S Chakravarty, Y Zou, et al. Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy. Optics Letters, 38, 3799-3802(2013).

    [66] W-C Lai, S Chakravarty, X Wang, et al. On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide. Optics Letters, 36, 984-986(2011).

    [67] M Iqbal, M A Gleeson, B Spaugh, et al. Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation. IEEE Journal of Selected Topics in Quantum Electronics, 16, 654-661(2010).

    [68] N Skivesen, A Têtu, M Kristensen, et al. Photonic-crystal waveguide biosensor. Optics Express, 15, 3169-3176(2007).

    [69] Chakravarty S, Zou Y, Yan H, et al. Silicon chip integrated photonic senss f biological chemical sensing [C]SPIE, 2016.

    [70] C Kraeh, Hurtado J L Martinez, A Popescu, et al. Slow light enhanced gas sensing in photonic crystals. Optical Materials, 76, 106-110(2018).

    [71] Y Zou, S Chakravarty, P Wray, et al. Experimental demonstration of propagation characteristics of mid-infrared photonic crystal waveguides in silicon-on-sapphire. Optics Express, 23, 6965-6975(2015).

    [72] Y Zou, S Chakravarty, R T Chen. Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities. Applied Physics Letters, 107, 081109(2015).

    [73] Y Zou, S Chakravarty, P Wray, et al. Mid-infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection. Sensors and Actuators B:Chemical, 221, 1094-1103(2015).

    [74] A Rostamian, E Madadi-kandjani, H Dalir, et al. Towards lab-on-chip ultrasensitive ethanol detection using photonic crystal waveguide operating in the mid-infrared. Nanophotonics, 10, 1675-1682(2021).

    [75] Nazabal V, Baudet E, Chahal R, et al. Chalcogenide glasses f IR photonic applications [C]2014 IEEE Photonics Society Summer Topical Meeting Series, 2014.

    [76] V Mittal, M Nedeljkovic, D J Rowe, et al. Chalcogenide glass waveguides with paper-based fluidics for mid-infrared absorption spectroscopy. Optics Letters, 43, 2913-2916(2018).

    [77] A Gutierrez-arroyo, E Baudet, L Bodiou, et al. Optical characterization at 7.7 µm of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared. Optics Express, 24, 23109-23117(2016).

    [78] E Baudet, A Gutierrez-arroyo, M Baillieul, et al. Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater. Advanced Device Materials, 3, 23-29(2017).

    [79] P T Lin, H Jung, L C Kimerling, et al. Low-loss aluminium nitride thin film for mid-infrared microphotonics. Laser & Photonics Reviews, 8, L23-L28(2014).

    [80] Jung H, Poot Menno, Tang H X. Inresonat variation of waveguide crosssections f dispersion control of aluminum nitride microrings [J]. Optics Express, 2015, 23(24): 3063430640.

    [81] W Pernice, C Xiong, C Schuck, et al. High-Q aluminum nitride photonic crystal nanobeam cavities. Applied Physics Letters, 100, 091105(2012).

    [82] B Dong, X Luo, S Zhu, et al. Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics. Optics Letters, 44, 73-76(2019).

    [83] M Belt, M L Davenport, J E Bowers, et al. Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates. Optica, 4, 532-536(2017).

    [84] M F A Muttalib, R Chen, S Pearce, et al. Anisotropic Ta2O5 waveguide etching using inductively coupled plasma etching. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 32, 041304(2014).

    [85] M Vlk, A Datta, S Alberti, et al. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy. Light: Science & Applications, 10, 26(2021).

    [86] C Chaneliere, J L Autran, R A B Devine, et al. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Materials Science and Engineering: R: Reports, 22, 269-322(1998).

    [87] C C Lee, C L Tien, W S Sheu, et al. An apparatus for the measurement of internal stress and thermal expansion coefficient of metal oxide films. Review of Scientific Instruments, 72, 2128-2133(2001).

    [88] C-L Wu, Y Hung, R Fan, et al. Tantalum pentoxide (Ta2O5) based athermal micro-ring resonator. OSA Continuum, 2, 1198-1206(2019).

    [89] D Saygin-Hinczewski, K Koc, I Sorar, et al. Optical and structural properties of Ta2O5–CeO2 thin films. Solar Energy Materials and Solar Cells, 91, 1726-1732(2007).

    [90] M Pi, C Zheng, H Zhao, et al. Mid-infrared ChG-on-MgF2 waveguide gas sensor based on wavelength modulation spectroscopy. Optics Letters, 46, 4797-4800(2021).

    [91] C Li, C Zheng, L Dong, et al. Ppb-level mid-infrared ethane detection based on three measurement schemes using a 3.34-μm continuous-wave interband cascade laser. Applied Physics B, 122, 185(2016).

    [92] T Jin, H Lin, T Tiwald, et al. Flexible mid-infrared photonic circuits for real-time and label-free hydroxyl compound detection. Scientific Reports, 9, 4153(2019).

    [93] C Chang, H Lin, M Lai, et al. Flexible localized surface plasmon resonance sensor with metal-insulator-metal nanodisks on PDMS substrate. Scientific Reports, 8, 11812(2018).

    [94] P Neutens, L Lagae, G Borghs, et al. Plasmon filters and resonators in metal-insulator-metal waveguides. Optics Express, 20, 3408-3423(2012).

    [95] Q Wei, J Xiao, D Yang, et al. Ultra-compact electro-optic modulator based on alternative plasmonic material. Appled Optics, 60, 5252-5257(2021).

    [96] D Ansell, I P Radko, Z Han, et al. Hybrid graphene plasmonic waveguide modulators. Nature Communications, 6, 8846(2015).

    [97] T Zhang, F Shan. Development and application of surface plasmon polaritons on optical amplification. Journal of Nanomaterials, 7-16(20147).

    [98] M A Izadi, R Nouroozi. Adjustable propagation length enhancement of the surface plasmon polariton wave via phase sensitive optical parametric amplification. Scientific Reports, 8, 15495(2018).

    [99] T Kang, B Fan, J Qin, et al. Mid-infrared active metasurface based on Si/VO2 hybrid meta-atoms. Photonics Research, 10, 373-380(2022).

    [100] R Adato, H Altug. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nature Communications, 4, 2154(2013).

    [101] O Limaj, D Etezadi, N J Wittenberg, et al. Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes. Nano Letters, 16, 1502-1508(2016).

    [102] H Zhou, X Hui, D Li, et al. Metal-organic framework‐surface‐enhanced infrared absorption platform enables simultaneous on‐chip sensing of greenhouse gases. Advanced Science, 7(20): 2001173(2020).

    [103] J Wei, Y Li, Y Chang, et al. Ultrasensitive transmissive infrared spectroscopy via loss engineering of metallic nanoantennas for compact devices. ACS Appl Mater Interfaces, 11, 47270-47278(2019).

    [104] J Xu, Z Ren, B Dong, et al. Nanometer-scale heterogeneous interfacial sapphire wafer bonding for enabling plasmonic-enhanced nanofluidic mid-infrared spectroscopy. ACS Nano, 14, 12159-12172(2020).

    [105] Y Chang, D Hasan, B Dong, et al. All-dielectric surface-enhanced infrared absorption-based gas sensor using guided resonance. ACS Appl Mater Interfaces, 10, 38272-38279(2018).

    [106] F Neubrech, A Pucci, T W Cornelius, et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Physical Review Letters, 101, 157403(2008).

    [107] N J Cho, C W Frank, B Kasemo, et al. Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates. Nature Protocols, 5, 1096-1106(2010).

    [108] D Rodrigo, A Tittl, N Ait-bouziad, et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces. Nature Communications, 9, 2160(2018).

    [109] T W W Maß, T Taubner. Incident angle-tuning of infrared antenna array resonances for molecular sensing. ACS Photonics, 2, 1498-1504(2015).

    [110] A Agrawal, A Singh, S Yazdi, et al. Resonant coupling between molecular vibrations and localized surface plasmon resonance of faceted metal oxide nanocrystals. Nano Letters, 17, 2611-2620(2017).

    [111] J J Baumberg, J Aizpurua, M H Mikkelsen, et al. Extreme nanophotonics from ultrathin metallic gaps. Nature Materials, 18, 668-678(2019).

    [112] G M Akselrod, C Argyropoulos, T B Hoang, et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nature Photonics, 8, 835-840(2014).

    [113] X Chen, C Wang, Y Yao, et al. Plasmonic vertically coupled complementary antennas for dual-mode infrared molecule sensing. Acs Nano, 11, 8034-8046(2017).

    [114] N Liu, M Mesch, T Weiss, et al. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett, 10, 2342-2348(2010).

    [115] L V Brown, X Yang, K Zhao, et al. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). Nano Letters, 15, 1272-1280(2015).

    [116] L Dong, X Yang, C Zhang, et al. Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy. Nano Letters, 17(9): 5768–5774(2017).

    [117] X Miao, Y Lingyue, Y Wu, et al. High-sensitivity nanophotonic sensors with passive trapping of analyte molecules in hot spots. Light: Science and Applications, 10, 5(2021).

    [118] J Chen, Y Xiong, F Xu, et al. Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology. Light:Science & Applications, 10 (1), 78(2021).

    [119] Y Zhu, Z Li, Z Hao, et al. Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface. Light: Science & Applications, 7, 67(2018).

    [120] Z Yang, T Albrow-Owen, W Cai, et al. Miniaturization of optical spectrometers. Science, 371, eabe0722(2021).

    [121] M I Mishchenko, J W Hovenier. Depolarization of light backscattered by randomly oriented nonspherical particles. Optics Letters, 20, 1356-1358(1995).

    [122] D Naumann, D Helm, H Labischinski. Microbiological characterizations by FT-IR spectroscopy. Nature, 351, 81-82(1991).

    [123] Rosema A. Potential of chlophyll fluescence f remote sensing of canopy photosynthesis[C]Proceedings of the Proc OECD Wkshop on Remote Sensing f Agriculture f the Environment, 2002.

    [124] V M Lavchiev, B Jakoby. Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing. IEEE Journal of Selected Topics in Quantum Electronics, 23, 452-463(2016).

    [125] M Hasan, M Rad, G M Hasan, et al. Ultra-high resolution wideband On-chip spectrometer. IEEE Photonics Journal, 12, 1-17(2020).

    [126] M Manley. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials. Chemical Society Reviews, 43, 8200-8214(2014).

    [127] D Ouzounov, F Freund. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Advances in Space Research, 33, 268-273(2004).

    [128] D M Kita, B Miranda, D Favela, et al. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nature Communications, 9 (1), 4405(2018).

    [129] A Li, Y Fainman. Integrated silicon Fourier transform spectrometer with broad bandwidth and ultra‐high resolution. Laser & Photonics Reviews, 15, 2000358(2021).

    [130] Z Lin, T Dadalyan, Villers S Bélanger-de, et al. Chip-scale full-Stokes spectropolarimeter in silicon photonic circuits. Photonics Research, 8, 864-874(2020).

    [131] Z Xia, A A Eftekhar, M Soltani, et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators. Optics Express, 19, 12356-12364(2011).

    [132] T Sarwar, S Cheekati, K Chung, et al. On-chip optical spectrometer based on GaN wavelength-selective nanostructural absorbers. Applied Physics Letters, 116, 081103(2020).

    [133] T T D Dinh, D González-Andrade, M Montesinos-Ballester, et al. Silicon photonic on-chip spatial heterodyne Fourier transform spectrometer exploiting the Jacquinot's advantage. Optics Letters, 46, 1341-1344(2021).

    [134] D González-Andrade, T T D Dinh, S Guerber, et al. Broadband Fourier-transform silicon nitride spectrometer with wide-area multiaperture input. Optics Letters, 46, 4021-4024(2021).

    [135] T Liu, A Fiore. Designing open channels in random scattering media for on-chip spectrometers. Optica, 7, 934-939(2020).

    [136] S Yuan, D Naveh, K Watanabe, et al. A wavelength-scale black phosphorus spectrometer. Nature Photonics, 15, 601-607(2021).

    [137] H S Lee, G W Hwang, T Y Seong, et al. Design of mid-infrared filter array based on plasmonic metal nanodiscs array and its application to on-chip spectrometer. Scientific Reports, 11, 12218(2021).

    [138] L Zhang, J Chen, C Ma, et al. Research progress on on‐chip Fourier transform spectrometer. Laser & Photonics Reviews, 15, 2100016(2021).

    [139] M Florjańczyk, P Cheben, S Janz, et al. Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers. Optics Express, 15, 18176-18189(2007).

    [140] M Nedeljkovic, A V Velasco, A Z Khokhar, et al. Mid-infrared silicon-on-insulator fourier-transform spectrometer chip. IEEE Photonics Technology Letters, 28, 528-531(2016).

    [141] E Heidari, X Xu, C-J Chung, et al. On-chip Fourier transform spectrometer on silicon-on-sapphire. Optics Letters, 44, 2883-2886(2019).

    [142] Q Liu, J M Ramirez, V Vakarin, et al. Integrated broadband dual-polarization Ge-rich SiGe mid-infrared Fourier-transform spectrometer. Optics Letters, 43, 5021-5024(2018).

    [143] M Montesinos-Ballester, Q Liu, V Vakarin, et al. On-chip Fourier-transform spectrometer based on spatial heterodyning tuned by thermo-optic effect. Scientific Reports, 9, 14633(2019).

    [144] A Fathy, Y M Sabry, S Nazeer, et al. On-chip parallel Fourier transform spectrometer for broadband selective infrared spectral sensing. Microsystems & Nanoengineering, 6 (1), 10(2020).

    [145] F KEIlmann, C Gohle, R Holzwarth. Time-domain mid-infrared frequency-comb spectrometer. Optics Letters, 29, 1542-1544(2004).

    [146] N Picqué, T W Hänsch. Frequency comb spectroscopy. Nature Photonics, 13, 146-157(2019).

    [147] I Coddington, N Newbury, W Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

    [148] P Del’haye, A Schliesser, O Arcizet, et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [149] T J Kippenberg, A L Gaeta, M Lipson, et al. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [150] M Yu, Y Okawachi, A G Griffith, et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nature Communications, 9, 1869(2018).

    [151] T Lin, A Dutt, C Joshi, et al. Broadband ultrahigh-resolution chip-scale scanning soliton dual-comb spectroscopy. arXiv preprint, 200100869(2020).

    [152] Rogalski A. HgCdTe photodetects [C]infrared Optoelectronics, 2020: 235335.

    [153] Steenbergen E H. InAsSbbased photodetects [C]infrared Optoelectronics, 2020: 415453.

    [154] C Liu, J Guo, L Yu, et al. Silicon/2D-material photodetectors: from near-infrared to mid-infrared. Light: Science & Applications, 10, 123(2021).

    [155] Du W, Yu SQ. Group IV photonics using (Si)GeSn technology toward IR applications [C]infrared Optoelectronics, 2020: 493538.

    [156] J Chen, J Wang, X Li, et al. Recent progress in improving the performance of infrared photodetectors via optical field manipulations. Sensors, 22, 677(2022).

    [157] M Carmody, J G Pasko, D Edwall, et al. Status of LWIR HgCdTe-on-silicon FPA technology. Journal of Electronic Materials, 37, 1184-1188(2008).

    [158] Dhar N K, Tidrow M Z. Largefmat IRFPA development on silicon[C]SPIE, 2004: 5564.

    [159] J Wu, Q Jiang, S Chen, et al. Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates. ACS Photonics, 3, 749-753(2016).

    [160] B W Jia, K H Tan, W K Loke, et al. Monolithic integration of insb photodetector on silicon for mid-infrared silicon photonics. ACS Photonics, 5, 1512-1520(2018).

    [161] E Delli, V Letka, P D Hodgson, et al. Mid-Infrared InAs/InAsSb superlattice nBn photodetector monolithically integrated onto silicon. ACS Photonics, 6, 538-544(2019).

    [162] E Wu, D Wu, C Jia, et al. In situ fabrication of 2 D WS2/Si type-II Heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photonics, 6, 565-572(2019).

    [163] H Cong, C Xue, J Zheng, et al. Silicon based GeSn p-i-n photodetector for SWIR detection. IEEE Photonics Journal, 8, 1-6(2016).

    [164] H Tran, T Pham, J Margetis, et al. Si-based GeSn photodetectors toward mid-infrared imaging applications. ACS Photonics, 6, 2807-2815(2019).

    [165] X Wang, Z Cheng, K Xu, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photonics, 7, 888-891(2013).

    [166] Qu Z, Nedeljkovic M, Wu Y, et al. Waveguide integrated graphene infrared photodetect[C]SPIE, 2018: 10537.

    [167] L Huang, B Dong, X Guo, et al. Waveguide-integrated black phosphorus photodetector for mid-infrared applications. ACS Nano, 13, 913-921(2019).

    Lipeng Xia, Yuheng Liu, Peiji Zhou, Yi Zou. Advances in mid-infrared integrated photonic sensing system (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220104
    Download Citation