• Laser & Optoelectronics Progress
  • Vol. 51, Issue 3, 30006 (2014)
Li Shiguo*, Wang Xinzhong, Zhou Zhiwen, and Zhang Weifeng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop51.030006 Cite this Article Set citation alerts
    Li Shiguo, Wang Xinzhong, Zhou Zhiwen, Zhang Weifeng. Developing Bottlenecks of Quasi-Zero-Dimensional Quantum Dot Lasers[J]. Laser & Optoelectronics Progress, 2014, 51(3): 30006 Copy Citation Text show less
    References

    [1] I Esaki, R Tsu. Supprlatice and negative differential conductivity in semiconductors[J]. IBM J Res Develop, 1970, 14(1): 61-65.

    [2] Y Arakawa, H Sakaki. Multidimensional quantum well laser and temperature dependence of its threshold current[J]. Appl Phys Lett, 1982, 40(11): 939-942.

    [3] M Asada,Y Miyamoto, Y Suematsu. Gain and the threshold of three dimensional quantum- box lasers[J]. IEEE J Quantum Electron, 1986, 22: 1915-1921.

    [4] Wang Zhanguo, Chen Yonghai, Ye Xiaoling, et al.. Nanometer Semiconductor Technologies[M]. Beijing: Chemical Industry Press, 2006.

    [5] J S Kim, J H Lee, S U Hong, et al.. Room-temperature operation of InP-based InAs quantum dot laser[J]. IEEE Photon Technol Lett, 2004, 16(7): 1607-1609.

    [6] S G Li, Q Gong, Y F Lao, et al.. Room temperature continuous- wave operation of InAs/InP(100) quantum dot lasers grown by gas source molecular beam epitaxy[J]. Appl Phys Lett, 2008, 93(11): 111109.

    [7] S Anantathanasarn, R Notzel, P J van Veldhoven, et al.. Lasing of wavelength- tunable (1.55 μm regions) InAs/InGaAsP/InP(100) quantum dots grown by metal organic vapor-phase-epitaxy[J]. Appl Phys Lett, 2006, 89(7): 073115.

    [8] P J Poole, K Kaminska, P Barrios, et al.. Growth of InAs/InP-based quantum dots for 1.55 μm laser applications[J]. J Cryst Growth, 2009, 311(6): 1482-1486.

    [9] S Frechengues, N Bertru, V Drouot, et al.. Monolayer coverage effects on size and ordering of self- organized InAs islands grown on (113)B InP substrates[J]. J Cryst Growth, 2000, 209(4): 661-665.

    [10] Shiguo Li, Qian Gong, Xinzhong Wang, et al.. Low- temperature characteristics of two- color InAs/InP quantum dots laser[J]. Chin Opt Lett, 2012, 10(4): 041406.

    [11] Li Yue, Qian Gong, Chunfang Cao, et al.. High performance InAs/GaAs quantum dot laser with the dot layers grown at 425 ℃[J]. Chin Opt Lett, 2013, 11(6): 061401.

    [12] I Alghoraibi, T Rohel, N Bertru, et al.. Self-assembled InAs quantum dots grown on InP(311)B substrates: role of buffer layer and amount of InAs deposited[J]. J Cryst Growth, 2006, 293(2): 263-268.

    [13] Lou Tenggang, Hu Lian, Wu Dongkai, et al.. Electroluminescent characteristics of CdSe colloidal- quantum dots[J]. J Inorganic Materials, 2012, 27(11): 1211-1215.

    [14] Chen Dingan, Shen Li, Zhang Jiayu, et al.. Colorimetrical study of colloidal CdSe quantum dots[J]. Acta Physica Sinica, 2007, 56(11): 6340-6344.

    [15] X Brokmann, G Messin, P Desbiolles, et al.. Colloidal CdSe/ZnS quantum dots as single- photon sources[J]. New J Physics, 2004, 99(6): 99.

    [16] Klimov V I, Mikhailovsky A A, Xu S, et al.. Optical gain and stimulated emission in nanocrystal quantum dots[J]. Science, 2000, 290(5490): 314-317.

    [17] Huiyun Liu, Ting Wang, Qi Jiang. et al.. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate[J]. Nature Photon, 2011, 5(7): 416-419.

    [18] C Cornet, F Dore, et al.. InAsSb/InP quantum dot for mid- wave infrared emitters: a theoretical study[J]. J Appl Phys, 2005, 98(12): 126105.

    [19] Ting Wang, Huiyun Liu, Andrew Lee, et al.. 1.3- μm InAs/GaAs quantum- dot lasers monolithically grown on Si substrates[J]. Opt Express, 2011, 19(12): 11381-11386.

    CLP Journals

    [1] Wang Ji, Han Junhe, Zhu Baohua, Dai Shuxi, Tan Yunlong, Gu Yuzong. Third-Order Nonlinear Optical Properties of Graphene-CdS Composites[J]. Chinese Journal of Lasers, 2015, 42(11): 1106006

    Li Shiguo, Wang Xinzhong, Zhou Zhiwen, Zhang Weifeng. Developing Bottlenecks of Quasi-Zero-Dimensional Quantum Dot Lasers[J]. Laser & Optoelectronics Progress, 2014, 51(3): 30006
    Download Citation