• Laser & Optoelectronics Progress
  • Vol. 59, Issue 7, 0716002 (2022)
Jianyun Xiang1, Maozhong Ge2、*, and Taiming Wang3
Author Affiliations
  • 1School of Modern Equipment Manufacturing, Changzhou Institute of Industry Technology, Changzhou , Jiangsu 213164, China
  • 2School of Material Engineering, Jiangsu University of Technology, Changzhou , Jiangsu 213001, China
  • 3AECC Changzhou Lanxiang Machinery Co., Ltd., Changzhou , Jiangsu 213022, China
  • show less
    DOI: 10.3788/LOP202259.0716002 Cite this Article Set citation alerts
    Jianyun Xiang, Maozhong Ge, Taiming Wang. Effect of Laser Shock Peening on High-Temperature Tensile Property of GH3039 Superalloy[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0716002 Copy Citation Text show less
    References

    [1] Wang X H, Zhao C, Guo Y Y et al. Study on drilling characteristics of supper alloy GH3039[J]. Materials Science Forum, 800/801, 119-123(2014).

    [2] Ge M Z, Xiang J Y. Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy[J]. Journal of Alloys and Compounds, 680, 544-552(2016).

    [3] Ge M Z, Xiang J Y, Tang Y et al. Wear behavior of Mg-3Al-1Zn alloy subjected to laser shock peening[J]. Surface and Coatings Technology, 337, 501-509(2018).

    [4] Ren X D, Zhou W F, Ren Y P et al. Dislocation evolution and properties enhancement of GH2036 by laser shock processing: dislocation dynamics simulation and experiment[J]. Materials Science and Engineering: A, 654, 184-192(2016).

    [5] Kattoura M, Mannava S R, Qian D et al. Effect of laser shock peening on elevated temperature residual stress, microstructure and fatigue behavior of ATI 718Plus alloy[J]. International Journal of Fatigue, 104, 366-378(2017).

    [6] Amini S, Dadkhah M, Teimouri R. Study on laser shock penning of Incoloy 800 super alloy[J]. Optik, 140, 308-316(2017).

    [7] Zhou L C, Long C B, He W F et al. Improvement of high-temperature fatigue performance in the nickel-based alloy by LSP-induced surface nanocrystallization[J]. Journal of Alloys and Compounds, 744, 156-164(2018).

    [8] Cao J D, Zhang J S, Hua Y Q et al. Microstructure and hot corrosion behavior of the Ni-based superalloy GH202 treated by laser shock processing[J]. Materials Characterization, 125, 67-75(2017).

    [9] Tang Y, Ge M Z, Wang T M et al. Effect of laser shock peening on fatigue life of GH3039 superalloy[J]. Laser & Optoelectronics Progress, 56, 221402(2019).

    [10] Zhou W, Ge M Z, Wang T M et al. Effect of laser shock peening on surface integrity of GH3039 superalloys[J]. Laser & Optoelectronics Progress, 58, 031401(2021).

    [11] Zhang H F, Huang S, Sheng J et al. Thermal relaxation of residual stress and grain evolution in laser peening IN718 alloy[J]. Chinese Journal of Lasers, 43, 0203008(2016).

    [12] Ananthakrishna G. Current theoretical approaches to collective behavior of dislocations[J]. Physics Reports, 440, 113-259(2007).

    [13] Pfaendtner J A, McMahon C J,. Oxygen-induced intergranular cracking of a Ni-base alloy at elevated temperatures: an example of dynamic embrittlement[J]. Acta Materialia, 49, 3369-3377(2001).

    [14] Shu D L[M]. Metal mechanical properties(1999).

    Jianyun Xiang, Maozhong Ge, Taiming Wang. Effect of Laser Shock Peening on High-Temperature Tensile Property of GH3039 Superalloy[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0716002
    Download Citation