• Laser & Optoelectronics Progress
  • Vol. 59, Issue 7, 0716002 (2022)
Jianyun Xiang1, Maozhong Ge2、*, and Taiming Wang3
Author Affiliations
  • 1School of Modern Equipment Manufacturing, Changzhou Institute of Industry Technology, Changzhou , Jiangsu 213164, China
  • 2School of Material Engineering, Jiangsu University of Technology, Changzhou , Jiangsu 213001, China
  • 3AECC Changzhou Lanxiang Machinery Co., Ltd., Changzhou , Jiangsu 213022, China
  • show less
    DOI: 10.3788/LOP202259.0716002 Cite this Article Set citation alerts
    Jianyun Xiang, Maozhong Ge, Taiming Wang. Effect of Laser Shock Peening on High-Temperature Tensile Property of GH3039 Superalloy[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0716002 Copy Citation Text show less
    High-temperature tension specimen. (a) Dimension; (b) real picture
    Fig. 1. High-temperature tension specimen. (a) Dimension; (b) real picture
    Microstructures of GH3039 supe alloy before and after LSP at room temperature. (a) Base metal; (b) LSP sample
    Fig. 2. Microstructures of GH3039 supe alloy before and after LSP at room temperature. (a) Base metal; (b) LSP sample
    Microstructure of LSP GH3039 after exposure at 600 ℃ for 5 h
    Fig. 3. Microstructure of LSP GH3039 after exposure at 600 ℃ for 5 h
    Residual stress distributions in surface layer of GH3039 superalloy before and after LSP
    Fig. 4. Residual stress distributions in surface layer of GH3039 superalloy before and after LSP
    Tensile stress-strain curves of GH3039 base metal and LSP sample tested at 600 ℃
    Fig. 5. Tensile stress-strain curves of GH3039 base metal and LSP sample tested at 600 ℃
    EDS analysis results of fracture of high-temperature tensile specimen. (a) Base metal; (b) LSP sample; (c) analysis result of point C in Fig. 6 (a); (d) analysis result of point D in Fig. 6 (a); (e) analysis result of point E in Fig. 6 (b); (f) analysis result of point F in Fig. 6 (b)
    Fig. 6. EDS analysis results of fracture of high-temperature tensile specimen. (a) Base metal; (b) LSP sample; (c) analysis result of point C in Fig. 6 (a); (d) analysis result of point D in Fig. 6 (a); (e) analysis result of point E in Fig. 6 (b); (f) analysis result of point F in Fig. 6 (b)
    Microstructures of high-temperature tensile fracture of GH3039. (a) Base metal; (b) LSP sample
    Fig. 7. Microstructures of high-temperature tensile fracture of GH3039. (a) Base metal; (b) LSP sample
    CompositionCCrMoAlTiNbMnSiFePSNi
    Value≤0.08019.000-22.0001.800-2.3000.350-0.7500.350-0.7500.900-1.3000.4000.800≤3.0000.0200.012Bal.
    Table 1. Chemical compositions of GH3039 (mass fraction, %)
    ParameterValue
    Pulse energy /J8
    Laser pulse width /ns16
    Laser wavelength /nm1053
    Spot diameter /mm3
    Overlapping rate /%50
    Table 2. Laser process parameters
    Holding time /h0.51510
    Surface residual stress /MPa-461.1-441.9-422.7-385.3
    Table 3. Thermal relaxation of residual stress in LSP GH3039 at 600 ℃
    PerformanceBefore LSPAfter LSP
    B1B2B3LSP1LSP2LSP3
    Ultimate tensile strength /MPa660.3652.7646.9697.2717.8700.1
    Elongation /%50.851.452.549.648.349.1
    Table 4. Tensile test results of GH3039 at 600 °C
    Jianyun Xiang, Maozhong Ge, Taiming Wang. Effect of Laser Shock Peening on High-Temperature Tensile Property of GH3039 Superalloy[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0716002
    Download Citation