
- Chinese Optics Letters
- Vol. 19, Issue 12, 123001 (2021)
Abstract
Keywords
1. Introduction
Single molecules are elementary building blocks for constructing integrated functional devices in the field of organic electronics and optoelectronics. Single-molecule spectroscopy conducted by a scanning tunneling microscope (STM), including STM-induced electroluminescence (STML)[
The fluorescence-quenching-suppression effect of an insulating decoupling layer might be attributed to at least two factors. Firstly, the insertion of an insulating decoupling layer will largely block the direct electron hybridization between the molecule and the substrate and thus suppress the ultrafast charge-transfer-induced quenching upon contact. Secondly, the decoupling layer will increase the distance between the molecular emitter and the metal substrate and thus suppress the Ohmic loss induced by the substrate. For practical reasons, one important question is whether and how the thickness and dielectric constant of the decoupling layer affect the molecular fluorescence. Previous STML experiments with single molecules adsorbed on ultrathin insulating NaCl films on Ag(100) surface show that as the thickness of NaCl films grows from two layers to five layers, the electroluminescence intensity grows monotonically, due to the better electronic and electromagnetic decoupling provided by the thicker decoupling layers[
In this Letter, we use classical electromagnetic simulations to systematically study the influence of a thin insulating decoupling layer on the local electric field enhancement and emission properties of a point dipole in the STM tunnel junction. For simplification, we only consider the electromagnetic response of the junction while the electronic structures of the metal junction and the decoupling layer are not considered. Our simulations show that the growth of a decoupling layer on the metal substrate surface will increase both the electric field intensity and lateral spatial confinement, compared to the situation with the same tip–substrate distance but without a decoupling layer. In addition, we find that there exists an optimal decoupling layer thickness to obtain the largest quantum efficiency of a dipole emitter, but this optimal thickness depends on the dielectric constant of the dielectric layer, the materials of the junction, as well as the dipole orientation. Furthermore, the simulations suggest that to obtain stronger molecular photoluminescence intensity and Raman intensity as well as higher spatial resolution, a decoupling layer with a larger dielectric constant is preferred.
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
2. Numerical Methods
We performed electromagnetic simulations using frequency-domain finite-element method based on COMSOL Multiphysics to numerically study the local electric field enhancement and the radiative and non-radiative decay enhancement of an electric dipole emitter in model STM junctions[
Figure 1.(a) Schematic illustration of the model STM junction used for electromagnetic simulations. The tip is modeled as a truncated cone with a radius of 30 nm, a height of 300 nm, and a semi-cone angle of 15°. (b) Local electric field enhancement Mz = |Ez|/|E0| at position (0, 0, 1.2 nm) as a function of incident photon energy for different decoupling layer dielectric constants εr. (c) Spatial distribution of the local electric field enhancement Mz = |Ez|/|E0| in the xz plane (with y = 0) for different dielectric constants εr. (d) Instantaneous induced surface charge density at the surfaces of the tip and the substrate for εr = 1 (upper panel) and εr = 9 (lower panel). The density values are normalized to the maximum value of εr = 1. In (b)–(d), the thickness of the decoupling layer is set to td = 1 nm, and the distance between the tip apex and the top surface of the decoupling layer is set to dvac = 0.6 nm.
The quantum efficiency of a point dipole is calculated as follows. We first calculate the electromagnetic fields in space for a point dipole placed at a position
3. Results and Discussions
Surface plasmons have been widely used to enhance weak optical signals, e.g., from molecules[
We first study the influence of the dielectric constant
The phenomenon that the electric field is enhanced in the vacuum but weakened inside the decoupling layer is more clearly illustrated in Fig. 2(a), where the local electric field enhancement
Figure 2.(a) Electric field enhancement Mz = |Ez|/|E0| along the z axis (with x = 0 and y = 0) for different decoupling layer dielectric constants εr. (b) Non-normalized and (c) normalized electric field enhancement Mz = |Ez|/|E0| along the x axis (with y = 0 and z = 1.2 nm). The gap distance is dgap = 1.6 nm, and the decoupling layer thickness is td = 1 nm.
In tip-enhanced single-molecule spectroscopy experiments, a larger electric enhancement and a better spatial confinement of the local electric field are usually in demand, since the former is usually related to the intensity, while the latter is related to the spatial resolution of molecular spectroscopy measurements. To achieve these goals, one could usually employ a sharper tip or decrease the gap distance. However, the introduction of the decoupling layer usually prevents one from shrinking the gap distance to extremely small values. Our calculations suggest that increasing the dielectric constant of the decoupling layer will help to increase the field enhancement and spatial confinement, although the distance between the surfaces of the metal tip and the metal substrate is still kept at a relatively large value.
In addition to the dielectric constant
Figure 3.Electric field enhancement with and without a dielectric layer with different thicknesses td and dielectric constants εr. Electric field enhancement |Ez|/|E0| distribution in the xz plane (y = 0) for (a) εr = 1 and (c) εr = 9 with different decoupling layer thicknesses. (b) Enhancement and (d) FWHM of the electric field enhancement |Ez|/|E0| along the x axis (y = 0 and z = td + 0.2 nm) as functions of decoupling layer thickness for four different dielectric constants.
Previous STML experiments for single molecules on ultrathin NaCl films suggested that as the thickness of the NaCl decoupling layer grows from two layers to five layers, the fluorescence intensity grows monotonically[
Figure 4.Schematics showing the configurations of (a) a vertical dipole and (d) a horizontal dipole in the model STM junctions. In (a), the shape of the tip and substrate are the same as in Fig.
However, when the vertical dipole is placed above a more lossy W substrate, choosing a proper decoupling layer thickness becomes more important [Fig. 4(c)]. When the thickness
Considering that many STML experiments were carried out for molecules with transition dipoles oriented parallel to the substrate, we also calculate the dependence of the quantum efficiency on the dielectric constant and thickness of the decoupling layer for a horizontal dipole [see Fig. 4(d) for schematic illustration]. To ensure comparatively large quantum efficiency, a spherical protrusion with a radius of 0.5 nm is superimposed at the apex of the tip shaft, and the horizontal dipole is laterally placed 0.5 nm away from the tip apex, following Ref. [9]. It is worthwhile to note that the protrusion at the tip apex is essentially important in preventing the emission from dipoles that are oriented parallel to the substrate from quenching. Moreover, to ensure an effective coupling between the horizontal dipole and the nanocavity plasmon, the dipole is placed 0.5 nm away laterally from the tip apex[
Finally, we briefly discuss the influence of the thickness
Figure 5.Influence of the dielectric constant of the decoupling layer on the TEPL and TERS intensities of a single dipole emitter. (a) TEPL intensity and (b) TERS intensity as functions of the decoupling layer thickness for different dielectric constants. (c) and (d) show the TEPL and TERS images for εr = 1 and εr = 9. In (c) and (d), the molecule is approximated as a vertical dipole, the gap distance is 1.6 nm, the thickness of the decoupling layer is 1 nm, and the plane for simulation of the photon image is z = 1.2 nm.
4. Conclusion
In this work, we have used electromagnetic simulations to numerically study the influence of a thin dielectric decoupling layer on the local field enhancement and molecular spectroscopy intensity in the junction of an STM. Our simulations show that the growth of a decoupling layer on the metal substrate surface will increase both the electric field intensity and lateral spatial confinement, compared to the situation with the same tip–substrate distance but without a decoupling layer. In addition, we find that there exists an optimal decoupling layer thickness to obtain the largest quantum efficiency of a dipole emitter, but this optimal thickness depends on the dielectric constant of the dielectric layer, the materials of the junction, as well as the dipole orientation. To obtain higher molecular photoluminescence, Raman intensities, and spatial resolution, a decoupling layer with a larger dielectric constant is preferred. These results may be instructive for further studies in molecular optics and optoelectronics in plasmonic junctions.
References
[1] X. H. Qiu, G. V. Nazin, W. Ho. Vibrationally resolved fluorescence excited with submolecular precision. Science, 299, 542(2003).
[2] Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, S. Mashiko. Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope. Phys. Rev. Lett., 92, 086801(2004).
[3] Y. Zhang, Y. Luo, Y. Zhang, Y. J. Yu, Y. M. Kuang, L. Zhang, Q. S. Meng, Y. Luo, J. L. Yang, Z. C. Dong, J. G. Hou. Visualizing coherent intermolecular dipole-dipole coupling in real space. Nature, 531, 623(2016).
[4] H. Imada, K. Miwa, M. Imai-Imada, S. Kawahara, K. Kimura, Y. Kim. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature, 538, 364(2016).
[5] L. Zhang, Y. J. Yu, L. G. Chen, Y. Luo, B. Yang, F. F. Kong, G. Chen, Y. Zhang, Q. Zhang, Y. Luo, J. L. Yang, Z. C. Dong, J. G. Hou. Electrically driven single-photon emission from an isolated single molecule. Nat. Commun., 8, 580(2017).
[6] B. Doppagne, M. C. Chong, H. Bulou, A. Boeglin, F. Scheurer, G. Schull. Electrofluorochromism at the single-molecule level. Science, 361, 251(2018).
[7] G. Chen, Y. Luo, H. Gao, J. Jiang, Y. Yu, L. Zhang, Y. Zhang, X. Li, Z. Zhang, Z. Dong. Spin-triplet-mediated up-conversion and crossover behavior in single-molecule electroluminescence. Phys. Rev. Lett., 122, 177401(2019).
[8] Y. Luo, G. Chen, Y. Zhang, L. Zhang, Y. Yu, F. Kong, X. Tian, Y. Zhang, C. Shan, Y. Luo, J. Yang, V. Sandoghdar, Z. Dong, J. G. Hou. Electrically driven single-photon superradiance from molecular chains in a plasmonic nanocavity. Phys. Rev. Lett., 122, 233901(2019).
[9] B. Yang, G. Chen, A. Ghafoor, Y. Zhang, Y. Zhang, Y. Zhang, Y. Luo, J. Yang, V. Sandoghdar, J. Aizpurua, Z. Dong, J. G. Hou. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photon., 14, 693(2020).
[10] R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, J. G. Hou. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 498, 82(2013).
[11] Y. Zhang, B. Yang, A. Ghafoor, Y. Zhang, Y.-F. Zhang, R.-P. Wang, J.-L. Yang, Y. Luo, Z.-C. Dong, J. G. Hou. Visually constructing the chemical structure of a single molecule by scanning Raman picoscopy. Natl. Sci. Rev., 6, 1169(2019).
[12] J. Lee, K. T. Crampton, N. Tallarida, V. A. Apkarian. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature, 568, 78(2019).
[13] K. Kuhnke, C. Grosse, P. Merino, K. Kern. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces. Chem. Rev., 117, 5174(2017).
[14] R. B. Jaculbia, H. Imada, K. Miwa, T. Iwasa, M. Takenaka, B. Yang, E. Kazuma, N. Hayazawa, T. Taketsugu, Y. Kim. Single-molecule resonance Raman effect in a plasmonic nanocavity. Nat. Nanotechnol., 15, 105(2020).
[15] A. Downes, D. Salter, A. Elfick. Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy. J. Phys. Chem. B, 110, 6692(2006).
[16] Y. Wei, H. Pei, D. Sun, S. Duan, G. Tian. Numerical investigations on the electromagnetic enhancement effect to tip-enhanced Raman scattering and fluorescence processes. J. Phys. Condens. Matter., 31, 235301(2019).
[17] A. D. Rakić, A. B. Djurišić, J. M. Elazar, M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt., 37, 5271(1998).
[18] C. Wu, N. Liu, H. Hu, X. Guo, B. Liao, J. Liu, L. Wang, C. Chen, X. Yang, Q. Dai. Detecting molecular vibrational modes of side chains and endpoints in nanoscale proteins with graphene plasmon. Chin. Opt. Lett., 17, 062401(2019).
[19] Y. Dong, Q. Yang, G. Du, F. Chen, N. Uddin, D. Lankanath, X. Hou. Electronic manipulation of near-field nanofocusing in few-layer graphene-based hybrid nanotips. Chin. Opt. Lett., 17, 072501(2019).
[20] Z. Yang, K. Du, W. Zhang, S. Chua, T. Mei. A polarization-insensitive fishnet/spacer/mirror plasmonic absorber for hot electron photodetection application. Chin. Opt. Lett., 18, 052402(2020).
[21] J. M. Pitarke, V. M. Silkin, E. V. Chulkov, P. M. Echenique. Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys., 70, 1(2007).
[22] I. Notingher, A. Elfick. Effect of sample and substrate electric properties on the electric field enhancement at the apex of SPM nanotips. J. Phys. Chem. B, 109, 15699(2005).
[23] N. Mauser, A. Hartschuh. Tip-enhanced near-field optical microscopy. Chem. Soc. Rev., 43, 1248(2014).
[24] J. R. Isaac, H. Xu. Fluorescence enhancement and quenching in tip-enhanced fluorescence spectroscopy. OSA Continuum, 1, 899(2018).
[25] A. Martin-Jimenez, A. I. Fernandez-Dominguez, K. Lauwaet, D. Granados, R. Miranda, F. J. Garcia-Vidal, R. Otero. Unveiling the radiative local density of optical states of a plasmonic nanocavity by STM. Nat. Commun., 11, 1021(2020).
[26] R. Faggiani, J. Yang, P. Lalanne. Quenching, plasmonic, and radiative decays in nanogap emitting devices. ACS Photonics, 2, 1739(2015).
[27] W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, K. B. Crozier. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun., 7, 11495(2016).

Set citation alerts for the article
Please enter your email address