• Acta Optica Sinica
  • Vol. 41, Issue 11, 1111001 (2021)
Yangeng Zhao1, Bing Dong1、2、*, Ming Liu1, Zhiqiang Zhou1, and Jing Zhou1
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing 100081, China
  • show less
    DOI: 10.3788/AOS202141.1111001 Cite this Article Set citation alerts
    Yangeng Zhao, Bing Dong, Ming Liu, Zhiqiang Zhou, Jing Zhou. Deep Learning Based Computational Ghost Imaging Alleviating the Effects of Atmospheric Turbulence[J]. Acta Optica Sinica, 2021, 41(11): 1111001 Copy Citation Text show less
    References

    [1] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429(1995).

    [2] Gatti A, Brambilla E, Bache M et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Physical Review Letters, 93, 093602(2004).

    [3] Edgar M P, Gibson G M, Padgett M J et al. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 13, 13-20(2019).

    [4] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [5] Katz O, Bromberg Y, Silberberg Y et al. Compressive ghost imaging[J]. Applied Physics Letters, 95, 131110(2009).

    [6] Wu Z W, Qiu X D, Chen L X et al. Current status and prospect for correlated imaging technique[J]. Laser & Optoelectronics Progress, 57, 060001(2020).

    [7] Erkmen B I. Computational ghost imaging for remote sensing[J]. Journal of the Optical Society of America A, 29, 782-789(2012).

    [8] Zhao C Q, Gong W L, Chen M L et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 101, 141123(2012).

    [9] Le M N, Wang G, Zheng H B et al. Underwater computational ghost imaging[J]. Optics Express, 25, 22859-22868(2017).

    [10] Cheng J, Lin J. Unified theory of thermal ghost imaging and ghost diffraction through turbulent atmosphere[J]. Physical Review A, 87, 043810(2013).

    [11] Hardy N D, Shapiro J H. Reflective ghost imaging through turbulence[J]. Physical Review A, 84, 063824(2011).

    [12] Shi D F, Fan C Y, Zhang P F et al. Adaptive optical ghost imaging through atmospheric turbulence[J]. Optics Express, 20, 27992-27998(2012).

    [13] Barbastathis G, Ozcan A, Situ G H et al. On the use of deep learning for computational imaging[J]. Optica, 6, 921-943(2019).

    [14] Zuo C, Feng S J, Zhang X Y et al. Deep learning based computational imaging: status, challenges, and future[J]. Acta Optica Sinica, 40, 0111003(2020).

    [15] Wang F, Wang H, Bian Y M et al. Applications of deep learning in computational imaging[J]. Acta Optica Sinica, 40, 0111002(2020).

    [16] Sun Y W, Shi J H, Sun L et al. Image reconstruction through dynamic scattering media based on deep learning[J]. Optics Express, 27, 16032-16046(2019).

    [17] Lyu M, Wang W, Wang H et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 7, 17865(2017).

    [18] Wang F, Wang H, Wang H C et al. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging[J]. Optics Express, 27, 25560-25572(2019). http://www.ncbi.nlm.nih.gov/pubmed/31510427

    [19] Li C B, Yin W T, Jiang H et al. An efficient augmented Lagrangian method with applications to total variation minimization[J]. Computational Optimization and Applications, 56, 507-530(2013).

    [20] Lane R G, Glindemann A, Dainty J C et al. Simulation of a Kolmogorov phase screen[J]. Waves in Random Media, 2, 209-224(1992).

    Yangeng Zhao, Bing Dong, Ming Liu, Zhiqiang Zhou, Jing Zhou. Deep Learning Based Computational Ghost Imaging Alleviating the Effects of Atmospheric Turbulence[J]. Acta Optica Sinica, 2021, 41(11): 1111001
    Download Citation