• Photonics Research
  • Vol. 10, Issue 12, 2786 (2022)
Zeng-Xing Liu1、* and Yong-Qing Li1、2
Author Affiliations
  • 1School of Electronic Engineering & Intelligentization, Dongguan University of Technology, Dongguan 523808, China
  • 2Department of Physics, East Carolina University, Greenville, North Carolina 27858-4353, USA
  • show less
    DOI: 10.1364/PRJ.467595 Cite this Article Set citation alerts
    Zeng-Xing Liu, Yong-Qing Li. Optomagnonic frequency combs[J]. Photonics Research, 2022, 10(12): 2786 Copy Citation Text show less
    References

    [1] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 288, 635-639(2000).

    [2] Th. Udem, R. Holzwarth, T. W. Hänsch. Optical frequency metrology. Nature, 416, 233-237(2002).

    [3] R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. St.J. Russell. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett., 85, 2264-2267(2000).

    [4] S. Diddams, T. Udem, J. Bergquist, E. Curtis, R. Drullinger, L. Hollberg, W. Itano, W. Lee, C. Oates, K. Vogel, D. Wineland. An optical clock based on a single trapped 199Hg+ ion. Science, 293, 825-828(2001).

    [5] M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, J. Ye. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science, 311, 1595-1599(2006).

    [6] T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, T. Udem. Laser frequency combs for astronomical observations. Science, 321, 1335-1337(2008).

    [7] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg. Optical frequency comb generation from a monolithic micoresonator. Nature, 450, 1214-1217(2007).

    [8] T. J. Kippenberg, R. Holzwarth, S. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [9] Y. Hu, S. Ding, Y. Qin, J. Gu, W. Wan, M. Xiao, X. Jiang. Generation of optical frequency comb via giant optomechanical oscillation. Phys. Rev. Lett., 127, 134301(2021).

    [10] L. S. Cao, D. X. Qi, R. W. Peng, M. Wang, P. Schmelcher. Phononic frequency comb through nonlinear resonance. Phys. Rev. Lett., 112, 075505(2014).

    [11] A. Ganesan, C. Do, A. Seshia. Phononic frequency comb via intrinsic three-wave mixing. Phys. Rev. Lett., 118, 033903(2017).

    [12] Z. Wang, H.-Y. Yuan, Y. Cao, Z.-X. Li, R. A. Duine, P. Yan. Magnonic frequency comb through nonlinear magnon-skyrmion scattering. Phys. Rev. Lett., 127, 037202(2021).

    [13] T. Hula, K. Schultheiss, F. J. T. Gonçalves, L. Körber, M. Bejarano, M. Copus, L. Flacke, L. Liensberger, A. Buzdakov, A. Kákay, M. Weiler, R. Camley, J. Fassbender, H. Schultheiss. Spin-wave frequency combs. Appl. Phys. Lett., 121, 112404(2022).

    [14] H. Xiong. Magnonic frequency combs based on the resonantly enhanced magnetostrictive effect. Fundamental Res..

    [15] H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, S. T. B. Goennenwein. High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. Phys. Rev. Lett., 111, 127003(2013).

    [16] X. Zhang, C.-L. Zou, L. Jiang, H. X. Tang. Cavity magnomechanics. Sci. Adv., 2, e1501286(2016).

    [17] J. Li, S.-Y. Zhu, G. S. Agarwal. Magnon-photon-phonon entanglement in cavity magnomechanics. Phys. Rev. Lett., 121, 203601(2018).

    [18] Z.-X. Liu, B. Wang, H. Xiong, Y. Wu. Magnon-induced high-order sideband generation. Opt. Lett., 43, 3698-3701(2018).

    [19] Z.-X. Liu, C. You, B. Wang, H. Xiong, Y. Wu. Phase-mediated magnon chaos-order transition in cavity optomagnonics. Opt. Lett., 44, 507-510(2019).

    [20] Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, Y. Nakamura. Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science, 349, 405-408(2015).

    [21] Y. Li, T. Polakovic, Y.-L. Wang, J. Xu, S. Lendinez, Z. Zhang, J. Ding, T. Khaire, H. Saglam, R. Divan, J. Pearson, W. K. Kwok, Z. Xiao, V. Novosad, A. Hoffmann, W. Zhang. Strong coupling between magnons and microwave photons in on-chip ferromagnet-superconductor thin-film devices. Phys. Rev. Lett., 123, 107701(2019).

    [22] J. T. Hou, L. Liu. Strong coupling between microwave photons and nanomagnet magnons. Phys. Rev. Lett., 123, 107702(2019).

    [23] M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, M. E. Tobar. High-cooperativity cavity QED with magnons at microwave frequencies. Phys. Rev. Appl., 2, 054002(2014).

    [24] X. Zhang, C.-L. Zou, L. Jiang, H. X. Tang. Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett., 113, 156401(2014).

    [25] Y.-P. Wang, G.-Q. Zhang, D. Zhang, T.-F. Li, C.-M. Hu, J.-Q. You. Bistability of cavity magnon polaritons. Phys. Rev. Lett., 120, 057202(2018).

    [26] Z.-X. Liu, H. Xiong, Y. Wu. Magnon blockade in a hybrid ferromagnet-superconductor quantum system. Phys. Rev. B, 100, 134421(2019).

    [27] X. Li, X. Wang, Z. Wu, W. X. Yang, A. Chen. Tunable magnon antibunching in a hybrid ferromagnet-superconductor system with two qubits. Phys. Rev. B, 104, 224434(2021).

    [28] Y. Wang, W. Xiong, Z. Xu, G.-Q. Zhang, J.-Q. You. Dissipation-induced nonreciprocal magnon blockade in a magnon-based hybrid system. Sci. China Phys. Mech. Astron., 65, 260314(2022).

    [29] S. V. Kusminskiy. Cavity optomagnonics. Optomagnonic Structures: Novel Architectures for Simultaneous Control of Light and Spin Waves, 299-353(2021).

    [30] X. Zhang, N. Zhu, C.-L. Zou, H. X. Tang. Optomagnonic whispering gallery microresonators. Phys. Rev. Lett., 117, 123605(2016).

    [31] A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura, Y. Nakamura. Cavity optomagnonics with spin-orbit coupled photons. Phys. Rev. Lett., 116, 223601(2016).

    [32] J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, A. J. Ferguson. Triple-resonant brillouin light scattering in magneto-optical cavities. Phys. Rev. Lett., 117, 133602(2016).

    [33] S. Sharma, Y. M. Blanter, G. E. W. Bauer. Light scattering by magnons in whispering gallery mode cavities. Phys. Rev. B, 96, 094412(2017).

    [34] S. V. Kusminskiy, H. X. Tang, F. Marquardt. Coupled spin-light dynamics in cavity optomagnonics. Phys. Rev. A, 94, 033821(2016).

    [35] T. Liu, X. Zhang, H. X. Tang, M. E. Flatté. Optomagnonics in magnetic solids. Phys. Rev. B, 94, 060405(2016).

    [36] N. Zhu, X. Zhang, X. Han, C.-L. Zou, C.-C. Zhong, C.-H. Wang, L. Jiang, H. X. Tang. Waveguide cavity optomagnonics for microwave-to-optics conversion. Optica, 7, 1291-1297(2020).

    [37] C. Z. Chai, Z. Shen, Y. L. Zhang, H. Q. Zhao, G. C. Guo, C. L. Zou, C. H. Dong. Single-sideband microwave-to-optical conversion in high-Q ferrimagnetic microspheres. Photon. Res., 10, 820-827(2022).

    [38] S. Sharma, Y. M. Blanter, G. E. W. Bauer. Optical cooling of magnons. Phys. Rev. Lett., 121, 087205(2018).

    [39] V. A. S. V. Bittencourt, V. Feulner, S. V. Kusminskiy. Magnon heralding in cavity optomagnonics. Phys. Rev. A, 100, 013810(2019).

    [40] Z.-X. Liu, H. Xiong. Magnon laser based on Brillouin light scattering. Opt. Lett., 45, 5452-5455(2020).

    [41] Y.-J. Xu, J. Song. Nonreciprocal magnon laser. Opt. Lett., 46, 5276-5279(2021).

    [42] B. Wang, X. Jia, X.-H. Lu, H. Xiong. PT-symmetric magnon laser in cavity optomagnonics. Phys. Rev. A, 105, 053705(2022).

    [43] Z. Zhai, Q. Zhu, J. Chen, Z.-C. Yan, P. Fu, B. Wang. High-order harmonic generation with Rydberg atoms by using an intense few-cycle pulse. Phys. Rev. A, 83, 043409(2011).

    [44] J. P. Marangos. Solid progress. Nat. Phys., 7, 97(2011).

    [45] P. Huang, X.-T. Xie, X. Lü, J. Li, X. Yang. Carrier-envelope-phase-dependent effects of high-order harmonic generation in a strongly driven two-level atom. Phys. Rev. A, 79, 043806(2009).

    [46] A. Danilin, G. Slinkov, V. Lobanov, K. Min’kov, I. Bilenko. Magneto-optical effects in a high-Q whispering-gallery-mode resonator with a large Verdet constant. Opt. Lett., 46, 2509-2512(2021).

    [47] A. V. Chumak, , B. Hillebrands. Magnon spintronics. Nat. Phys., 11, 453(2015).

    [48] A. D. Kent, D. C. Worledge. A new spin on magnetic memories. Nat. Nano, 10, 187(2015).

    [49] D. Lachance-Quirion, S. P. Wolski, Y. Tabuchi, S. Kono, K. Usami, Y. Nakamura. Entanglement-based single-shot detection of a single magnon with a superconducting qubit. Science, 367, 425-428(2020).

    [50] A. A. Serga, A. V. Chumak, B. Hillebrands. YIG magnonics. J. Phys. D, 43, 264002(2010).

    [51] D. D. Stancil, A. Prabhakar. Spin Waves: Theory and Applications(2009).

    [52] R. Y. Chiao, C. H. Townes, B. P. Stoicheff. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Lett., 12, 592-595(1964).

    [53] T. Holstein, H. Primakoff. Phys. Rev., 58, 1098-1113(1940).

    [54] For a YIG sphere with a diameter of 200 μm, the effective optomagnonic coupling strength g=Vcnr2nspinVm is theoretically evaluated to be 2π×39.2 Hz, with the Verdet constant V=3.77 rad/cm, spin density nspin=2.1×1028/m3, refractive index nr=2.19, and YIG sphere volume V=(4π/3)×(0.2/2)3 mm3.

    [55] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [56] C. W. Gardiner, P. Zoller. Quantum Noise(2000).

    [57] H. Xiong, L. G. Si, A. S. Zheng, X. Yang, Y. Wu. Higher-order sidebands in optomechanically induced transparency. Phys. Rev. A, 86, 013815(2012).

    [58] S. Svanberg. Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications(2012).

    [59] T. S. Parvini, V. A. Bittencourt, S. V. Kusminskiy. Antiferromagnetic cavity optomagnonics. Phys. Rev. Res., 2, 022027(2020).

    [60] Z.-X. Liu, H. Xiong, M.-Y. Wu, Y.-Q. Li. Absorption of magnons in dispersively coupled hybrid quantum systems. Phys. Rev. A, 103, 063702(2021).

    [61] H. Xiong, L.-G. Si, X.-Y. Lü, X. Yang, Y. Wu. Nanosecond-pulse-controlled higher-order sideband comb in a GaAs optomechanical disk resonator in the non-perturbative regime. Ann. Phys., 349, 43-54(2014).

    Zeng-Xing Liu, Yong-Qing Li. Optomagnonic frequency combs[J]. Photonics Research, 2022, 10(12): 2786
    Download Citation