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Optical frequency combs are fundamentally important in precision measurement physics, bringing unprec-
edented capabilities of measurements for time keeping, metrology, and spectroscopy. In this work, we investigate
theoretically the formation of a form of frequency combs in cavity optomagnonics, in which a ferrimagnetic
insulator sphere supports optical whispering gallery modes for both light photons and magnons. Numerical sim-
ulations of the optomagnonic dynamics show that a robust frequency comb can be obtained at low power under
the bichromatic pumping drive, and the comb spacing is adjustable. Furthermore, the optomagnonic frequency
comb structure has abundant non-perturbative features, suggesting that the magnon-induced Brillouin light scat-
tering process in cavity optomagnonics may also exhibit phenomena similar to those in atomic–molecular sys-
tems. In addition to providing insight into optomagnonic nonlinearity, optomagnonic frequency combs may also
provide the feasibility of implementing frequency combs based on spintronic platforms and may find applications
for precision metrology based on magnonic devices. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.467595

1. INTRODUCTION

A frequency comb is a spectrum composed of a series of evenly
spaced and discrete frequency components with coherent and
stable phase relationships [1–9]. It has been extensively studied
and has had a broad impact on fundamental science and ad-
vanced technology, such as optical metrology [2], precision
spectroscopy [3], optical atomic clocks [4], molecular finger-
printing [5], and astrophysical spectrometers calibration [6].
With the development of research, many methods to generate
frequency combs have been proposed. For example, the con-
ventional optical frequency combs are implemented in optical
systems based on mode-locked lasers [1] and later realized in
chip-scale microresonators mediated via the Kerr nonlinearity
[7,8], which has the potential to make frequency metrology and
spectroscopy widely applicative. In addition, a direct analog of
frequency combs in the phononic domain has been reported in
a microscopic extensional mode resonator via three-mixing pro-
cess [10,11]. More recently, frequency combs have also been
theoretically predicted and experimentally proved in the area
of spin waves [12–14].

Magnons, the quasiparticle of spin-wave excitations in or-
dered magnets, have become a widely applicative research topic
in the field of condensed matter physics and quantum optics
[15–35]. As a fundamentally different type of light–matter in-
teraction, cavity optomagnonics has attracted much attention,
and is the study of the cavity-enhanced interaction between
optical photons and magnons via spin–orbit coupling

[29–35]. Cavity optomagnonics provides a powerful method-
ology for the coherent control of spin waves using light, which
emerges as a promising candidate for efficient microwave-
to-optics transduction [36,37]. Moreover, many photonic phe-
nomena, such as optical cooling of magnons [38], magnon
heralding [39], and magnon lasers [40–42], have been reported
in cavity optomagnonics. Despite the similarities between mag-
nons and photons in many aspects, a direct analog for optical
frequency combs in cavity optomagnonics has not yet been well
studied.

The purpose of the present work is to investigate a novel
frequency comb in the optomagnonics domain, in which
the magnon-mediated Brillouin scattering between optical pho-
tons and magnons induces the generation of optomagnonic fre-
quency combs. The frequency ω of the nth comb tooth can
be written as a simple function of two frequencies: pumping
frequency ωl and repetition frequency ωr, such that
ω � ωl � nωr . Our theory shows that using bichromatic
pumping to generate frequency combs has its inherent advan-
tages, such as low power, robust frequency comb teeth, and
adjustable comb spacing. Also, the non-perturbative features
of optomagnonic frequency combs are discussed in detail, sug-
gesting that the magnon mode may also exhibit phenomena
that are similar to those in atomic–molecular systems
[43–45], including non-perturbative effects. In addition, the
feasibility of experimental observation of optomagnonic fre-
quency combs under current experimental conditions has been

2786 Vol. 10, No. 12 / December 2022 / Photonics Research Research Article

2327-9125/22/122786-08 Journal © 2022 Chinese Laser Press

mailto:liuzx@dgut.edu.cn
mailto:liuzx@dgut.edu.cn
mailto:liuzx@dgut.edu.cn
https://doi.org/10.1364/PRJ.467595


evaluated [30–32,36,46]. Beyond their fundamental scientific
significance, our results provide a new idea for exploring novel
types of frequency combs in the optomagnonics domain and
may find potential applications in precision metrology based
on magnonic devices [47–49].

2. MODEL AND THEORY

The physical model we consider is a cavity optomagnonics sys-
tem, as shown in Fig. 1, in which a ferromagnetic insulator
yttrium iron garnet (YIG) sphere supports whispering gallery
modes (WGMs) for light photons, as well as the magnetostatic
mode for magnons with a frequency ωm. To saturate the mag-
netization, an external magnetic field Bz perpendicular to the
WGM orbital plane (x − y plane) is introduced. The frequency
of the magnon mode in the YIG sphere can be tuned by adjust-
ing the external magnetic field, i.e., ωm � ϱBm, where
ϱ∕2π � 28 GHz∕T is the gyromagnetic ratio, and Bm is
the magnetic field strength [50]. The input laser is introduced
through a polarization controller and then evanescently
coupled to the YIG sphere via a tapered optical nanofiber,
and light is confined within the symmetrical sphere due to
the complete internal reflection, forming a WGM resonator
[30–32]. Of particular note is that the waveguide is assumed
to be a single-mode fiber that supports only one transverse op-
tical mode with two polarization components, E∥z or E∥x,
marked as transverse-electric (TM) mode and transverse-
magnetic (TE) mode, respectively. Furthermore, assuming that
the direction of light propagation (x − y plane) is perpendicular
to the mean magnetization in ferromagnets (z direction), the
well-known magnon-induced Brillouin scattering will occur
[51]. Brillouin scattering is essentially the inelastic scattering
of light excited by various quasiparticles, such as polarons, pho-
nons, or magnons [52]. For the cavity optomagnonic system,
the photons in the WGM resonator and the magnons in the
YIG sphere undergo Brillouin scattering to produce Stokes
photons or anti-Stokes photons. Under weak excitation, the
Hamiltonian of the cavity optomagnonic system, including
the optical part, the magnetic subsystem, and the optomag-
nonic interaction, can be described as [29]

HCOM � H opt �Hmag �H int, (1)

where

H opt �
Z �X

ıj

ϵıj�Ms�
2

E ıE�
j �

jBLj2
2μ0

�
dr,

Hmag �
Z �

−ϱM · �B0ez � Bd � �
jBd j2
2μ0

�
dr,

H int �
X
ıj

Z
ϵıj�M�

2
E ıE�

j dr: (2)

ϵıj�Ms� and ϵıj�M� are, respectively, the elastic and inelastic
terms of the dielectric permittivity tensor, where
ı, j ∈ fx, y, zg. E ı�j� denotes the component of the electric field,
and μ0 is the vacuum magnetic permeability. B �
B0ez � BL � Bd is the total magnetic field with B0 the dc ap-
plied static magnetic field in the z direction that saturates the
magnetization, BL the ac contribution due to light at optical
frequencies, and Bd the demagnetizing field induced by the
static magnetic field [33]. M � �Mx ,My,Mz� represents
the magnetization of the YIG sphere, with the macrospin op-
erator introduced, i.e., the relation S � MV m∕ϱ ≡ �Sx , Sy, Sz�,
where V m is the volume of the YIG sphere. Hence, the
Hamiltonian in Eq. (1), in quantum mechanical language,
can be quantized as

HCOM � ℏωaa†a� ℏωbb†b − γB0Sz

� ℏg�S�ab† � S−a†b� � h:c:, (3)

where a (a†) and b (b†) are the annihilation (creation) operators
of the optical TM and TE modes with frequencies ωa and ωb,
respectively. g � 1

N spin

c
nr
V is the optomagnonic coupling coef-

ficient with N spin the number of spins in the YIG sphere, V the
Verdet constant, nr the refractive index, and c the vacuum
speed of light [31]. Assume that the direction of the dc mag-
netic field is in the z direction; thereby, the raising and lowering
operators of the macrospin S� ≡ Sx � iSy can be introduced
via the Holstein–Primakoff transformations [53]

S� �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2S − m†m
p �

m,

S− � m†
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2S − m†m
p �

,

Sz � S − m†m, (4)

where S is the total spin number of the macrospin operator, and
m �m†� is the annihilation (creation) operator of the magnon
mode. For low-lying excitations, i.e., the generated magnon
number is much smaller than the total spin number
hm†mi∕2S ≪ 1, the macrospin operators can be approximated
by S� ≈

ffiffiffiffiffi
2S

p
m and S− ≈ m†

ffiffiffiffiffi
2S

p
. The Hamiltonian in

Eq. (3), therefore, can be obtained as

HCOM � ℏωaa†a� ℏωbb†b� ℏωmm†m

� ℏg�ab†m� a†bm†�, (5)

where g � ffiffiffiffiffi
2S

p
g � V c

nr

ffiffiffiffiffiffiffiffiffiffiffi
2

nspinV m

q
is the effective optomag-

nonic coupling strength with nspin the spin density. For
a YIG sphere with a diameter of 200 μm, the effective

Fig. 1. Schematic illustration of the optomagnonic WGMs, in
which the YIG sphere supports WGMs for photons and the magneto-
static mode for magnons. A magnetic field Bz perpendicular to the
plane of the WGM is applied to saturate the magnetization. A bichro-
matic input laser light (temporal and spectral in the rotating frame)
evanescently couples to the optical WGMs via a nanofiber, and
the output field supports the generation of optomagnonic frequency
combs.
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optomagnonic coupling strength is theoretically evaluated to be
g0 � 2π × 39.2 Hz [54].

Suppose that the input laser, including a driving field and a
probe field with powers Pl and Pp and frequencies ωl and ωp, is
adjusted to couple to the TMmode. Furthermore, a hypothesis
that Brillouin scattering occurs only between TM and TE
modes with the same WGM index is also taken into account
[29]. Simultaneously, the YIG sphere is pumped by a micro-
wave incident field with pump power Pm and frequency ωmw.
Thus, the total time-dependent Hamiltonian can be written as

H tot � ℏωaa†a� ℏωbb†b� ℏωmm†m� ℏg�ab†m� a†bm†�
� ℏϵl �aeiωl t � a†e−iωl t� � ℏϵp�aeiωpt � a†e−iωpt�
� ℏϵm�meiωmwt � m†e−iωmwt�, (6)

where ϵl�p��m� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κa�m�Pl�p��mw�∕ℏωl�p��mw�

p
is the Rabi fre-

quency denoting the coupling strength between the optical
(microwave) driving field and TM optical (magnon) mode.
κa and κm are the decay rates of the TM optical mode and mag-
non mode, respectively. To make the driving terms time
independent, a doubly rotating frame for the optical and micro-
wave driving frequencies is adopted. Namely, applying the
unitary transformation U �t� � exp�−iωl a†at − iωmwm†mt−
i�ωl � ωmw�b†bt 	, the Hamiltonian in Eq. (6) can be written
in the form

H tot � U �t�HU †�t� − iℏU �t� ∂U
†�t�
∂t

� ℏΔaa†a� ℏΔbb†b� ℏΔmm†m

� ℏg�ab†m� a†bm†��ℏϵl �a� a†�
� ℏϵp�aeiΔpt � a†e−iΔpt� � ℏϵm�m� m†�, (7)

where Δa � ωa − ωl and Δb � ωb − ωl − ωmw are the detun-
ings between the optical driving frequency and the TM and TE
optical modes, respectively. In addition, Δm � ωm − ωmw is the
detuning from the microwave pumping field and the magnon
mode, and Δp � ωp − ωl is the beat frequency between the
optical driving field and the probe field. It should be noted that
the optomagnonic interaction, similar to the optomechanical
interaction [55], is inherently nonlinear, which becomes
clear after taking the following transformation: HKerr �
U†HCOMU � ℏωaa†a� ℏωbb†b� ℏωmm†m� ℏ g2

ωm
a†bab†,

where the unitaryU � exp��m† − m��g∕ωm�a†b	. Obviously, it
can be seen that the mutual effects between the optical and
magnon modes can be seen as cross-Kerr-like nonlinear
interaction.

According to the Heisenberg–Langevin approach, the dy-
namic behavior of the cavity optomagnonic system can be de-
scribed by the following nonlinear equations:

□ ·Φ � MΦ − iμ� ϱ, (8)

where □ ·Φ � d
dt �a, b,m�T , Φ � �a, b,m�T , μ �

�εl � ϵpe−iΔpt ; 0; εm�T , and

M �
 
−�iΔa � κa� −igm† 0

0 −�iΔb � κb� −iga
0 −iga† −�iΔm � κm�

!
,

where κb is the damping rate of the TE optical mode, and for
simplicity, we assume that TM and TE optical modes
have identical damping rates κa � κb. ϱ � � ffiffiffiffiffiffiffi

2κa
p

ain�t�,ffiffiffiffiffiffiffi
2κb

p
bin�t�,

ffiffiffiffiffiffiffiffi
2κm

p
min�t��T represent the noise terms of the

optical and magnon modes, characterized by the tempera-
ture-dependent correlation functions [56] hain�t�a†in�t 0�i �
�nth�ωa� � 1	δ�t − t 0�, ha†in�t�ain�t 0�i � �nth�ωa�	δ�t − t 0�, and
hmin�t�m†

in�t 0�i � �mth�ωm� � 1	δ�t − t 0�, hm†
in�t�min�t 0�i �

�mth�ωm�	δ�t − t 0�. Here, nth�ωa� � �exp� ℏωa
K BT

� − 1	−1 and

mth�ωm� � �exp�ℏωm
K BT

� − 1	−1, with Boltzmann constant K B

and ambient temperature T , are the equilibrium mean thermal
photon and magnon numbers, respectively. The output field
from the cavity optomagnonic system can be obtained by using
the input–output relation [29] sout�t� � sin�t� −

ffiffiffiffiffiffiffi
2κa

p
a�t�,

where sin�t� � ϵl � ϵpe−iΔpt is the effective bichromatic optical
input field in a rotating frame at ωl . Therefore, the time
evolution of the output field can be obtained by solving the
coupling Eq. (8), and correspondingly, the frequency spectra
of the output field can be obtained by doing the fast
Fourier transform.

3. RESULTS AND DISCUSSION

First of all, the time evolution of the TM (TE) mode photon
number jaj2 (jbj2) with and without the optomagnonic cou-
pling interaction will be discussed in detail. Equation (8) com-
prises nonlinear ordinary differential equations, which can be
numerically solved by using the Runge–Kutta method. The in-
itial condition is chosen as ajt�0 � 0, bjt�0 � 0, and
mjt�0 � 0. The sample length of the Fourier transform is taken
as N � 100;000, and the sample frequency f s � 5 × 108.
The noise power is taken as −20 dB relative to the input field
power, i.e., 10 log10

Pnoise

Pl
� −20 dB. In the absence of opto-

magnonic interplay, the optomagnonic coupling strength is
zero, as shown in Figs. 2(a) and 2(c). For the TM mode,
the photon number jaj2 oscillates periodically over time and
the average photon number is jaj2 ∼ 2 × 109, which is consis-
tent with the result of the analytical description,
i.e., jaj2 � κaPl∕fℏωl �Δ2

a � �κa∕2�2	g [40]. Furthermore,
the vibration frequency is equal to the beat frequency between
the optical driving field and the probe field. However, for the
TE mode, since there is no direct drive from the input laser, the
photon number jbj2 is zero in the case of g � 0. It should be
pointed out that Fig. 2(c) shows the background of the system
white noise. When the interaction between the magnons and
photons in the YIG sphere is introduced, there is an obvious
transient process at the beginning, and after the transient pro-
cess, the optomagnonic system reaches a stable oscillation be-
fore t � 2 μs, as shown in Figs. 2(b) and 2(d). To be specific,
when the optomagnonic coupling strength g∕2π �
2 × 39.2 Hz, the oscillations of jaj2 and jbj2 are irregular in
the transient process, while in the stable process, the oscillations
of jaj2 and jbj2 are periodic. In addition, the average photon
number of the TM mode is increased by two orders of mag-
nitude compared to the case of g � 0.

Next, the generation of optomagnonic frequency combs
from the cavity optomagnonic system is explored. The output
spectrum S�ω� ∝ j R∞−∞ sout�t�e−iωtdtj can be obtained by doing
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the fast Fourier transform of sout�t�. It should be noted that the
output spectrum discussed here has been shifted by an optical
driving frequency ωl as a whole, because the kinetic equations
describe the evolution of the optical field in a frame rotating at
frequency ωl. Figure 3(a) shows a high dependence of the fre-
quency spectrum on the optomagnonic coupling strength.
Obviously, with the increase of optomagnonic coupling
strength, more and more frequency combs can be generated;
especially, when the optomagnonic coupling strength exceeds
a certain threshold (about g∕g0 ∼ 1.2), robust frequency comb
teeth can be obtained. Specifically, in the absence of the opto-
magnonic interaction, i.e., g � 0 [white dotted line in
Fig. 3(a)], the system can be equivalent to a blank cavity,
and only two lines appear in the frequency spectrum,
i.e., the optical pump and the probe fields [as shown in
Fig. 3(b)]. Furthermore, the distance between them is equal
to the beat frequency between the pump and the probe fields,
viz. Δω � Δp, and both lines have the same strength because
the amplitudes of the optical pump and probe fields were
chosen as ϵl � ϵp. However, when the optomagnonic coupling
interplay is introduced and g∕2π � 39.2 Hz [black dotted line
in Fig. 3(a)], an obvious comb structure appears in the output
spectrum, and we call such combs optomagnonic frequency
combs. Likewise, the frequency comb spacing is equal to the
beat frequency between the optical pump and probe fields
[as shown in Fig. 3(c)]. To get more robust optomagnonic fre-
quency combs, the optomagnonic coupling strength is further
increased to g∕2π � 3 × 39.2 Hz [red dotted line in Fig. 3(a)].
More specifically, as shown in Fig. 3(d), there is a plateau region
in the output spectrum where all comb teeth have nearly the
same intensity. We can observe typical non-perturbative signs
in the frequency comb structure [45], for example, the ampli-
tude of the fifth-order comb tooth is larger than that of the
fourth-order comb tooth.

Notably, the spectrum structure is not symmetric about
ω � ωl (here, refers to the asymmetry of the comb intensity),
and the physical mechanism can be understood from the asym-
metry of the frequency downconversion and upconversion
(i.e., Stokes and anti-Stokes) processes. Under the action of
the bichromatic pumping, due to the resonance enhancement
effect of the cavity field, the anti-Stokes process is stronger than
the Stokes process in the generation of low-order frequency
combs, which is similar to the generation of the high-order
sidebands in the cavity optomechanical system [57]. With
the increase of comb order, the cavity field resonance enhance-
ment effect is no longer dominant. The Stokes process is
stronger than the anti-Stokes process, because under normal
circumstances, the anti-Stokes sidebands excited by higher level
transitions are much weaker. On the contrary, the Stokes side-
band generated by the lower energy level transition will be
much stronger [58], which is in good agreement with the result
in Fig. 3(d). In addition, we find that the system noise will
drown out part of the frequency comb signal, making the
frequency spectrum look more disordered, that is, there will
be many irregular “burrs” at the bottom of the frequency
combs. However, the system noise does not change the overall
structure of the frequency combs, such as frequency comb spac-
ing. Physically, the optomagnonic frequency combs are gener-
ated through the three-particle (two light photons and one
magnon) process mediated by Brillouin light scattering
[30–32], which is slightly different from the generation of
high-order harmonics caused by the interaction between an
electromagnetic field and charge in intense driven atomic–
molecular systems [43–45]. Nevertheless, the same typical
spectral structures, such as the plateau region and cutoff fre-
quency in both optomagnonic frequency combs and high-order
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Fig. 2. Time evolution of the TM (TE) mode photon number jaj2
(jbj2) with different optomagnonic coupling strengths g . (a) g � 0 and
(b) g∕2π � 2 × 39.2 Hz for the TM mode; (c) g � 0 and
(d) g∕2π � 2 × 39.2 Hz for the TE mode. The parameters we
used are [30,31] ωl∕2π � 300 THz, ωm∕2π � 6.75 GHz,
�κa, κb, κm	∕2π � �15,15,1	 MHz, Δa�b��p��m� � κm, Pl � 10 mW,
Pmw � 50 mW, and ϵl � ϵp.

Fig. 3. (a) Frequency spectrum output from the cavity optomag-
nonic system varies with the optomagnonic coupling strength g∕g0
(take g0 � 2π × 39.2 Hz as the normalized value). The color indicates
the amplitude of the frequency combs. (b)–(d) Frequency spectra
under different optomagnonic coupling strengths g∕g0 � �0,1,3	, re-
spectively. The other parameters are the same as those in Fig. 2.
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harmonics, suggest that magnons may also exhibit phenomena
that are similar to those in atomic–molecular systems.

The dependence of the optomagnonic spectrum on the driv-
ing power and the beat frequency between the optical driving
field and the probe field is also discussed, as shown in Fig. 4. It
can be seen that as the driving field power increases, more and
more comb teeth are generated in the spectrum, which is analo-
gous to the generation of optical frequency combs in optome-
chanical systems [9]. The total comb width (e.g., number of
comb lines) as a function of optical driving power is shown
in Fig. 4(b), which reminds us of the possibility of achieving
a broadband optomagnonic frequency comb by increasing the
driving power. It is not difficult to find that a robust frequency
comb can also be obtained with lower driving field power,
which is significantly better than the case where the frequency
comb is seeded by a monochromatic driving field in other mag-
non systems [12,14]. In fact, these are two different mecha-
nisms for the frequency comb generation in magnonics. The
use of a bichromatic pumping laser to generate frequency
combs has its inherent advantages, for instance, low power, ro-
bust frequency comb teeth, and adjustable comb spacing. As
shown in Fig. 4(c), the frequency comb spacing exhibits a high
dependence on the beat frequency between the optical driving
field and the probe field. For example, when the beat frequency
Δp∕κm � �1,2� [red and black dotted lines in Fig. 4(c)], the
results are shown in Fig. 4(d) upper panel and lower panel
(for convenience, we draw only part of the comb spectrum).
It can be seen that the frequency comb spacings Δω � 2κm
and Δω � κm, respectively.

Also, the dependence of comb generation on other system
parameters is discussed, as shown in Fig. 5. The simulation re-
sults show that the systemmust be working in the near resonant

region, so as to obtain a robust frequency comb. However,
when the input laser is in large detuning, regardless of blue de-
tuning or red detuning driving, the flat comb structure cannot
be acquired [as shown in Fig. 5(a)]. Similarly, for the microwave
driving field, it is necessary to keep resonance with the eigen-
frequency of the magnon to get a robust frequency comb.
Physically, only under resonance driving can more magnon
modes be excited on the YIG sphere [24] [as shown in
Fig. 5(b)]. This means that the comb generation in our scheme
can be controlled by adjusting the intensity of the external mag-
netic field, because the frequency of the magnon mode in the
YIG sphere can be tuned by adjusting the external magnetic
field, i.e., ωm � ϱBm [50]. In addition, the dependence of
the optomagnonic frequency comb generation on the decay
rate of the TM optical mode and magnon mode is also numeri-
cally simulated, and the results are shown in Figs. 5(c) and 5(d),
respectively. By discussing the system parameters, we can clearly
know the effective operational range of these parameters to sup-
port the comb generation.

In what follows, it is necessary to study the generation of
optomagnonic frequency combs under a pulsed pump, which
may provide some theoretical guidance for the realization of
optomagnonic frequency combs by using a pulsed laser in ex-
periment. Consider that the input field contains a monochro-
matic control field and a pulsed pump, i.e., sin�t� �
ϵl e−iωl t � ϵpε�t�e−iωpt , where ε�t� is the carrier envelope of
the pulse, and we choose the Gaussian wave packet here, that
is, ε�t� � exp�−α�t−t0tp

�2	, with α � 2 ln 2, t0 being the center
time of the pulse, and tp being the full width at half maximum
of the intensity envelope. In a frame rotating at ωl , the effective
driving fields become ϵl � ϵpε�t�e−iΔpt , where Δp can be seen
as the effective frequency of the driving pulse, and its time do-
main diagram is shown in Fig. 6(a) under t0 � 1 ms and

Fig. 4. (a) Dependence of the frequency spectrum on driving power.
(b) Number of comb lines as a function of driving power. (c) The
complete response of the output spectrum varies with the beat fre-
quency Δp. (d) Frequency spectra at two different beat frequencies
Δp∕κm � 1 (upper panel) and 2 (lower panel). The optomagnonic
coupling strength is fixed at g∕2π � 2 × 39.2 Hz. The other param-
eters are the same as those in Fig. 2.

Fig. 5. Dependence of the frequency spectrum on (a) detuning be-
tween the optical driving field and TM mode, (b) detuning between
the microwave driving field and magnon mode, (c), (d) decay rates of
the TM optical mode and magnon mode, respectively (for conven-
ience, take κm0 � 2π × 1 MHz as the normalized value). The other
parameters are the same as those in Fig. 2.
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tp � 10 μs. In this case, the number of effective cycles can be
estimated to be 2tpΔp∕2π ∼ 20. Furthermore, we find that
with the increase of the number of cycles in a pulse, the gen-
eration of optomagnonic frequency combs will be enhanced, as
shown in Fig. 6(b). Physically, the more cycles in a pulse, the
more concentrated the energy of the pulsed driving field, which
can enhance the magnon-induced Brillouin light scattering
process, and thus more flat frequency combs can be obtained.
Under the pulsed pump at tp � 0.5 ms, as shown in Fig. 6(c),
unlike the previous discussion in Fig. 3, the comb lines have
noteworthy linewidth and are no longer sharp lines. To analyze
the linewidth of the comb lines more clearly, we zoom up the
frequency axis, as shown in Fig. 6(d). We can find that the
linewidth of the comb lines Δω ∼ 0.001Δp, which is almost
equal to the linewidth of the driving pulse. The linewidth
of the driving pulse can be estimated by the time–frequency
uncertainty relation, i.e., ΔωΔt ∼ 2π. The uncertainty of
the frequency, therefore, is Δω ∼ 2π∕Δt . Here, the pulse
duration is about 2tp, and thus the uncertainty of the frequency
can be obtained as Δω ∼ 0.001Δp.

In the remaining part of this work, non-perturbative features
of the optomagnonic frequency combs are discussed elabo-
rately. To the best of our knowledge, most previous reports
on cavity optomagnonics are based on the perturbative inter-
action between the driving field and the optomagnonic system
[59,60]. For example, in our scheme, Eq. (8) can be solved
analytically for the case of ϵp ≪ ϵl , the so-called perturbation
regime. In this case, the probe field can be regarded as a per-
turbation, and the solution of Eq. (8) can be written as o �
ō� δo �o � a, b,m�. However, for the case of ϵp∕ϵl > 1, the
method of perturbatively adding the nonlinear terms is inap-
plicable. As nontrivial behavior, non-perturbative properties

can better reflect the nonlinear nature of optomagnonic
interaction. Figure 7 shows the dependence of the amplitude
of the first, second, third, and fourth comb
teeth on different values of ϵp∕ϵl . When ϵp∕ϵl is small
(0 < ϵp∕ϵl < 1), the intensity of the comb teeth increases lin-
early, quadratically, cubically, and quartically with the ampli-
tude of the probe field ϵp, i.e., S�nω� ∝ ϵnp (dashed curves
in Fig. 7), which is typical perturbative behavior. It should
be pointed out that the intensities of the first, second, third,
and fourth-order frequency combs under the condition of
ϵp � ϵl are respectively used as the proportional coefficients
of the fitting curves in Fig. 7. Under these circumstances,
the spectral characteristics of the optomagnonic frequency
combs can be described in perturbation language, that is,
the higher the comb teeth order considered, the smaller the
amplitude obtained. When ϵp∕ϵl > 1, however, the amplitudes
of comb teeth dependence deviate from power-law scaling. In
this case, the perturbative description breaks down, and the
non-perturbative method is required for studying this effect
[61]. From the above discussion, we can see that some of the
interesting nonlinear phenomena found in atomic–molecular
systems, such as the frequency comb and the non-perturbative
effect, can also be observed in cavity optomagnonics as a result
of the magnon-induced Brillouin light scattering.

Finally, it is essential to discuss the possibility of experimen-
tally observing the generation of optomagnonic frequency
combs based on the current experimental progress. First,
YIG has a large spin density (ρs ≈ 4.22 × 1027 m−3) and high
Curie temperature (∼550 K) [50], and as an ideal platform
possesses good tunability and compatibility with other quan-
tum systems, such as microwave photons, optical photons,
and phonons. Furthermore, the input laser can be coupled into
the YIG through a tapered fiber to form a stable WGM, while
the microwave radiation from a vector network analyzer (VNA)
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can excite magnons by an antenna [30–32]. An electromagnet
is required to generate a static magnetic field to saturate
the magnetization of the YIG. To obtain a robust frequency
comb, a strong optomagnonic coupling strength is required.
Experimentally, the improvement of the optomagnonic cou-
pling strength might be realized in several aspects, for instance,
manufacturing nanostructured magnets [49], scaling down the
YIG sphere size [31], improving the surface quality of the YIG
sphere, as well as chemically processing the YIG sphere [30].
Through these improvements, the optomagnonic coupling
strength is expected to increase two orders of magnitude
[38], which provides a guarantee for the realization of optomag-
nonic frequency combs. Although these methods are limited by
the current process technology, we firmly believe that with the
development of technology, high optomagnonic coupling
strength can be achieved in the near future. In addition, other
magneto-optical materials, such as terbium gallium garnet, have
been experimentally demonstrated to have a higher Verdet con-
stant that can support ultra-high-Q WGMs (Q � 1.45 × 108)
[46], which offers an ideal candidate for achieving robust op-
tomagnonic frequency combs. Recently, a cavity optomagnonic
system based on an integrated waveguide structure and its ap-
plication in microwave-to-optical conversion have been proved
experimentally [36], which provides a feasible way to realize
optomagnonic frequency combs on a chip.

4. CONCLUSION

In summary, the formation of a novel form of frequency combs
in cavity optomagnonics has been theoretically investigated.
The underlying mechanism can be understood in terms of
the magnon-mediated Brillouin scattering between two optical
photons and one magnon. In addition, the dynamical evolution
of the cavity optomagnonic system in the time domain and the
comb structure in the frequency domain, especially the non-
perturbation characteristics, are discussed in detail. Besides
being of fundamental importance to nonlinear optomagnonics,
optomagnonic frequency combs could have broad implications
for many practical applications based on magnonic devices.
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