• Laser & Optoelectronics Progress
  • Vol. 55, Issue 5, 050005 (2018)
Jianfei Liu*, Dengke Xing, Xiangye Zeng, and Jia Lu
Author Affiliations
  • Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China
  • show less
    DOI: 10.3788/LOP55.050005 Cite this Article Set citation alerts
    Jianfei Liu, Dengke Xing, Xiangye Zeng, Jia Lu. Orbital Angular Momentum Multiplexing Technology Based on Optical Fiber[J]. Laser & Optoelectronics Progress, 2018, 55(5): 050005 Copy Citation Text show less
    References

    [1] Willner A E, Huang H, Yan Y et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 7, 66-106(2015). http://www.opticsinfobase.org/aop/abstract.cfm?uri=aop-7-1-66

    [2] Allen L, Beijersbergen M W, Spreeuw R J et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992). http://prola.aps.org/abstract/PRA/v45/i11/p8185_1

    [3] Mair A, Vaziri A, Weihs G et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 412, 313-316(2001). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000004000005000040000001&idtype=cvips&gifs=Yes

    [4] Gibson G, Courtial J, Padgett M J et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 12, 5448-5456(2004). http://www.ncbi.nlm.nih.gov/pubmed/19484105

    [5] Wang J, Yang J Y, Fazal I M et al. Demonstration of 12.8-bit/s/Hz spectral efficiency using 16-QAM signals over multiple orbital-angular-momentum modes. [C]∥37 th European Conference and Exposition on Optical Communications , 12356541(2011).

    [6] Ren Y, Huang H, Xie G et al. Experimental turbulence effects on crosstalk and system power penalty over a free space optical communication link using orbital angular momentum multiplexing. [C]∥IEEE Conference on Lasers and Electro-Optics, 14392562(2013).

    [7] Huang H, Xie G, Ren Y et al. 4×4 MIMO equalization to mitigate crosstalk degradation in a four-channel free-space orbital-angular-momentum-multiplexed system using heterodyne detection. [C]∥39 th European Conference and Exhibition on Optical Communication , 13842070(2013).

    [8] Liu J, Wang J. Polarization-insensitive PAM-4-carrying free-space orbital angular momentum (OAM) communications[J]. Optics Express, 24, 4258-4269(2016). http://www.opticsinfobase.org/abstract.cfm?uri=oe-24-4-4258

    [9] Wang J, Yang J Y, Fazal I M et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 6, 488-496(2012). http://www.nature.com/nphoton/journal/v6/n7/abs/nphoton.2012.138.html

    [10] Zhao S M, Jiang X C, Gong L Y et al. Communications using orbital angular momentum multiplexing[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 35, 1-13(2015).

    [11] Sun P J. Generation of vector vortex beams in an optical fiber[D]. Harbin: Harbin University of Science and Technology(2016).

    [12] Djordjevic I B. Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation[J]. Optics Express, 19, 14277-14289(2011). http://www.opticsinfobase.org/abstract.cfm?uri=oe-19-15-14277

    [13] Alexeyev A N, Fadeyeva T A, Volyar A V. Optical votices and the flow of their angular momentum in a multimode fiber[J]. Semiconductor Physics, Quantum Electronics & Optoelectronics, 1, 82-89(1998). http://www.researchgate.net/publication/266498885_Optical_vortices_and_the_flow_of_their_angular_momentum_in_a_multimode_fiber

    [14] Huang G Y. Modal characteristics of OAM in a modified ring fiber[D]. Hangzhou: Zhejiang University of Technology(2015).

    [15] Brunet C, Vaity P, Messaddeq Y et al. Design, fabrication and validation of an OAM fiber supporting 36 states[J]. Optics Express, 22, 26117-26127(2014). http://europepmc.org/abstract/med/25401644

    [16] Ramachandran S, Kristensen P, Yan M F et al. Generation and propagation of radially polarized beams in optical fibers[J]. Optics Letters, 34, 2525-2527(2009). http://www.opticsinfobase.org/abstract.cfm?URI=ol-34-16-2525

    [17] Bozinovic N, Golowich S, Kristensen P et al. Control of orbital angular momentum of light with optical fibers[J]. Optics Letters, 37, 2451-2453(2012). http://europepmc.org/abstract/MED/22743418

    [18] Golowich S, Kristensen P, Bozinovic N et al. Fibers supporting orbital angular momentum states for information capacity scaling. [C]∥Proceeding of Frontiers in Optics Conference, New York(2012).

    [19] Gregg P, Kristensen P, Golowich S et al. CTu2K:. Electro-Optics, CTu2K, 2(2013).

    [20] Gregg P, Kristensen P, Ramachandran S. 13.4 km OAM state propagation by recirculating fiber loop[J]. Optics Express, 24, 18938-18947(2016). http://www.ncbi.nlm.nih.gov/pubmed/27557175

    [21] Li S H, Wang J. Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing[J]. IEEE Photonics Journal, 5, 7101007(2013). http://ieeexplore.ieee.org/document/6565350/

    [22] Li S H, Wang J. A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings×22 modes)[J]. Scientific Reports, 4, 1-8(2014). http://pubmedcentralcanada.ca/pmcc/articles/PMC3900931/

    [23] Zhu M, Zhang W, Xi L et al. A new designed dual-guided ring-core fiber for OAM mode transmission[J]. Optical Fiber Technology, 25, 58-63(2015). http://www.sciencedirect.com/science/article/pii/S1068520015001017

    [24] Jung Y M, Kang Q, Zhou H et al. Low-loss 25.3 km few-mode ring-core fiber for mode-division multiplexed transmission[J]. Journal of Lightwave Technology, 35, 1363-1368(2017). http://ieeexplore.ieee.org/document/7833138/

    [25] Wang W, Hou L T. Present situation and future development in photonics crystal fibers[J]. Laser & Optoelectronics Progress, 45, 43-58(2008).

    [26] Zhang H, Zhang W B, Xi L X, Photonics Conference et al. ASu2A:. Hongkong, ASu2A, 54(2015).

    [27] Hu Z A, Huang Y Q, Luo A P et al. Photonic crystal fiber for supporting 26 orbital angular momentum modes[J]. Optics Express, 24, 17285-17291(2016). http://www.ncbi.nlm.nih.gov/pubmed/27464177

    [28] Zhang H, Zhang W, Xi L et al. ATh2C:, ATh2C, 4(2016).

    [29] Zhu G X, Wang X Y, Chen Y J, modes[C]∥Asia Communications, Photonics Conference et al. AM3C:. Hongkong, AM3C, 4(2015).

    [30] Huang W, Liu Y, Wang Z et al. Generation and excitation of different orbital angular momentum states in a tunable microstructure optical fiber[J]. Optics Express, 23, 33741-33752(2015). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-23-26-33741

    [31] Ung B, Vaity P, Wang L et al. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes[J]. Optics Express, 22, 18044-18055(2014). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-15-18044

    [32] Zhu L, Wang A, Liu J et al. W2A:[C]. OAM, modes transmission in a 2.6 km conventional graded-index multimode fiber assisted by high efficient mode-group excitation∥Optical Fiber Communication Conference, W2A, 32(2016).

    [33] Li S, Wang J. Supermode fiber for orbital angular momentum (OAM) transmission[J]. Optics Express, 23, 18736-18745(2015). http://www.ncbi.nlm.nih.gov/pubmed/26191933

    [34] Turnbull G A, Roberston D A, Smith G M et al. The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate[J]. Optics Communications, 127, 183-188(1996). http://www.sciencedirect.com/science/article/pii/0030401896000703

    [35] Guo M J, Zeng J, Li J H. Generation and interference of vortex beam based on spiral phase plate[J]. Laser & Optoelectronics Progress, 53, 092602(2016).

    [36] Beijersbergen M W. Allen L, vander Venn H E L O, et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 96, 123-132(1993).

    [37] Tamn C, Weiss C O. Bistability and optical switching of spatial patterns in a laser[J]. Journal of the Optical Society of America B, 7, 1034-1038(1990). http://www.opticsinfobase.org/abstract.cfm?URI=josab-7-6-1034

    [38] Heckengerg N R, Mcduff R, Smith C P et al. Generation of optical phase singularities by computer-generated holograms[J]. Optics Letters, 17, 221-223(1992). http://www.opticsinfobase.org/abstract.cfm?URI=ol-17-3-221

    [39] Yan Y, Lin Z, Jian W et al. Generating orbital angular momentum modes in a fiber with a central square and a ring profile. [C]∥IEEE Photonics Conference, Arlington, 12443071(2011).

    [40] Wang J, Yang J Y, Fazal I M et al. 25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes. [C]∥IEEE Photonics Conference, Arlington, 12470003(2011).

    [41] Yan Y, Wang J, Zhang L et al. Fiber coupler for generating orbital angular momentum modes[J]. Optics Letters, 36, 4269-4271(2011). http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-21-4269

    [42] Pelegrima-Bonilla G, Hausmann K, Sayinc H et al. Analysis of the modal evolution in fused-type mode-selective fiber couplers[J]. Optics Express, 23, 22977-22990(2015). http://www.opticsinfobase.org/abstract.cfm?uri=oe-23-18-22977

    [43] Hou J, Wang L Z, Yang C Y et al. Progress in optical orbital angular momentum communications[J]. Journal of South-Central University for Nationalities (Natural Science Edition), 33, 67-90(2014).

    [44] Karimi E. Schulz S A, de Leon I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 3, e167(2014). http://www.nature.com/articles/lsa201448

    [45] Du J, Li X H, Li S H, beams generation, Communication Conference & Exhibition et al. W2A:. California, W2A, 13(2016).

    [46] Zhang N, Yuan X C, Burge R E. Extending the detection range of optical vortices by Dammann vortex gratings[J]. Optics Letters, 35, 3495-3497(2010). http://europepmc.org/abstract/med/20967111

    [47] Yu J, Zhou C, Jia W et al. Three-dimensional Dammann vortex array with tunable topological charge[J]. Applied Optics, 51, 2485-2490(2012). http://www.opticsinfobase.org/abstract.cfm?uri=ao-51-13-2485

    [48] Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V. Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator[J]. Optics Letters, 38, 534-536(2013). http://europepmc.org/abstract/MED/23455127

    [49] Chen M, Mazilu M, Arita Y et al. Dynamics of microparticles trapped in a perfect vortex beam[J]. Optics Letters, 38, 4919-4922(2013). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6988550

    [50] Chen Y, Fang Z X, Ren Y X et al. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device[J]. Applied Optics, 54, 8030-8035(2015). http://www.ncbi.nlm.nih.gov/pubmed/26406501

    [51] Wang Y J, Li X Z, Li H H et al. Research progress of perfect vortex field[J]. Laser & Optoelectronics Progress, 54, 090007(2016).

    [52] Leach J, Padgett M J, Barnett S M et al. Measuring the orbital angular momentum of a single photon[J]. Physics Review Letters, 88, 257901(2002). http://europepmc.org/abstract/MED/12097130

    [53] Schattschneider P, Stoger-Pollach M, Verbeeck J. Novel vortex generator and mode converter for electrons[J]. Physical Review Letters, 109, 084801(2012). http://www.ncbi.nlm.nih.gov/pubmed/23002749/

    [54] Hossack W J, Darling A M, Dahdour A. Coordinate transformations with multiple computer-generated optical-elements[J]. Journal of Modern Optics, 34, 1235-1250(1987). http://www.tandfonline.com/doi/abs/10.1080/09500348714551121

    [55] Saito Y, Komatsu S, Ohzu H. Scale and rotation invariant real-time optical correlator using computer generated hologram[J]. Optics Communications, 47, 8-11(1983). http://www.sciencedirect.com/science/article/pii/0030401883903267

    [56] Beckhout G C. Lavery M P J, Courtial J, et al. Efficient sorting of orbital angular momentum states of light[J]. Physics Review Letters, 105, 153601(2010).

    [57] Zhong L. Generation of OAM laser and detection of OAM states[D]. Beijing: Beijing Institute of Technology(2015).

    [58] Ke X Z, Xu J Y. Interference and detection of vortex beams with orbital angular momentum[J]. Chinese Journal of Lasers, 43, 0905003(2016).

    [59] Mirhosseini M, Malik M, Shi Z et al[J]. Efficient separation of the orbital angular momentum eigenstates of light Nature Communications, 2013, 2781.

    [60] Strain M J, Cai X, Wang J et al[J]. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters Nature Communications, 2014, 4856.

    [61] Cai X, Wang J, Strain M J et al. Integrated compact optical vortex beam emitters[J]. Science, 338, 363-366(2012). http://www.ncbi.nlm.nih.gov/pubmed/23087243

    [62] Huang H, Yue Y, Yan Y et al. Liquid-crystal-on-silicon-based optical add/drop multiplexer for orbital-angular-momentum-multiplexed optical links[J]. Optics Letters, 38, 5142-5145(2013). http://europepmc.org/abstract/med/24281530

    [63] Liu B, Liu J, Chen P et al. Photonic demultiplexer for radio frequency orbital-angular-momentum signals. [C]∥IEEE Opto-Electronics and Communications Conference, 15650055(2015).

    [64] Wei W, Mahdjoubi K, Brousseau C et al. Generation of OAM waves with circular phase shifter and array of patch antennas[J]. Electronics Letters, 51, 442-443(2015). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7062104

    [65] Bian F, Li S, Song Y et al. Generation of wideband radio frequency signals carrying orbital angular momentum based on microwave photonics phase shifter. [C]∥IEEE Conference on Lasers and Electro-Optics, 14862184(2014).

    [66] Jung Y, Kang Q, Sidharthan R et al. Optical orbital angular momentum amplifier based on an air-hole erbium-doped fiber[J]. Journal of Lightwave Technology, 35, 430-436(2017). http://ieeexplore.ieee.org/document/7812586/

    [67] Ingerslev K, Gregg P, Galili M et al. M2D:[C]. MIMO-free OAM transmission∥Optical Fiber Communication Conference, M2D, 1(2017).

    [68] Krenn M, Handsteiner J, Fink M et al. Twisted light transmission over 143 km. [C]∥Proceedings of the National Academy of Sciences of the United States of America, 113, 13648-13653(2016).

    [69] Wang A D, Zhu L, Chen S et al. Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50 km fiber[J]. Optics Express, 24, 11716-11726(2016). http://www.ncbi.nlm.nih.gov/pubmed/27410097

    [70] Bozinovic N, Kristensen P. CTuB: CTuB1[C]. Ramachandran S. Long-range fiber-transmission of photons with orbital angular momentum∥Conference on Lasers, Electro-Optics(2011).

    [71] Bozinovic N, Yue Y, Ren Y X et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 340, 1545-1548(2013). http://www.jstor.org/stable/41988640

    [72] Nejad R M, Allahverdyan K, Vaity Pet al. Orbital angular momentum mode division multiplexing over 1. SW4F:. Electro-Optics, SW4F, 3(2016).

    [73] Wang J, Zhu L, Zou K et al. SW4F:[C]. OAM, modes, de, multiplexing, transmission in 2-km fiber with Nyquist 32-QAM coherent detection signals∥Conference on Lasers, Electro-Optics, SW4F, 2(2016).

    [74] Lai J S, Wu B B, Zhao W Y et al[J]. Application and analysis of orbital angular momentum technology in optical communication Telecommunications Science, 2014, 46-54.

    [75] Milione G, Huang H, Lavery M et al. M3K:[C]. de, multiplexer: a single optical element for MIMO-based, non-MIMO-based multimode fiber systems∥Optical Fiber Communication Conference, M3K, 6(2014).

    Jianfei Liu, Dengke Xing, Xiangye Zeng, Jia Lu. Orbital Angular Momentum Multiplexing Technology Based on Optical Fiber[J]. Laser & Optoelectronics Progress, 2018, 55(5): 050005
    Download Citation