• Acta Optica Sinica
  • Vol. 44, Issue 5, 0504001 (2024)
Juan Zhang, Er Yao, and Shaoying Ke*
Author Affiliations
  • Key Laboratory of Light Field Manipulation and System Integration Applications in Fujian Province, College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, Fujian , China
  • show less
    DOI: 10.3788/AOS231693 Cite this Article Set citation alerts
    Juan Zhang, Er Yao, Shaoying Ke. Optimal Design of Charge-Free Layer InGaAs/Si Avalanche Photodetector[J]. Acta Optica Sinica, 2024, 44(5): 0504001 Copy Citation Text show less
    References

    [1] Kim H, Jung Y, Doh I J et al. Smartphone-based low light detection for bioluminescence application[J]. Science Letter, 7, 40203(2017).

    [2] Li C, Wu K, Cao X Y et al. Monolithic coherent LABS lidar based on an integrated transceiver array[J]. Optics Letters, 47, 2907-2910(2022).

    [3] Li Z H, Bao Z Y, Shi Y F et al. Photon-counting chirped amplitude modulation lidar with 1.5-GHz gated InGaAs/InP APD[J]. IEEE Photonics Technology Letters, 27, 616-619(2015).

    [4] Li Z J, Lai J C, Wu Z X et al. Dead-time-based sequence coding method for single-photon lidar ranging[J]. Optics Communications, 517, 128260(2022).

    [5] Koehler-Sidki A, Dynes J F, Lucamarini M et al. Best-practice criteria for practical security of self-differencing avalanche photodiode detectors in quantum key distribution[J]. Physical Review Applied, 9, 044027(2018).

    [6] Piveteau A, Pauwels J, Håkansson E et al. Entanglement-assisted quantum communication with simple measurements[J]. Nature Communications, 13, 7878(2022).

    [7] Couteau C, Barz S, Durt T et al. Applications of single photons to quantum communication and computing[J]. Nature Reviews Physics, 5, 326-338(2023).

    [8] Brambila E, Gómez R, Fazili R et al. Ultrabright polarization-entangled photon pair source for frequency-multiplexed quantum communication in free-space[J]. Optics Express, 31, 16107-16117(2023).

    [9] Gao H T, Muralidharan S, Karim M R et al. Neutron irradiation and forming gas anneal impact on β-Ga2O3 deep level defects[J]. Journal of Physics D, 53, 465102(2020).

    [10] Love A C, Caldwell D R, Kolbaba-Kartchner B et al. Red-shifted coumarin luciferins for improved bioluminescence imaging[J]. Journal of the American Chemical Society, 145, 3335-3345(2023).

    [11] Wan C, Hao H, Zhao Q Y et al. Application of single photon detection in wireless optical communication transceiver technology[J]. Laser & Optoelectronics Progress, 59, 0500001(2022).

    [12] Lv T R, Zhang W H, Yang Y Q et al. Micro/nano-fabrication of flexible poly (3, 4-ethylenedioxythiophene)-based conductive films for high-performance microdevices[J]. Small, 19, 2301071(2023).

    [13] Ke Y X, Cen Y Q, Qi D Y et al. Two-dimensional materials photodetectors for optical communications[J]. Chinese Journal of Lasers, 50, 0113008(2023).

    [14] Bai X, Li Y F, Fang X W et al. Innovative strategy to optimize the temperature-dependent lattice misfit and coherency of iridium-based γ/γ′ interfaces[J]. Applied Surface Science, 609, 155369(2023).

    [15] Fan Y B, Shi T T, Ji W J et al. Ultra-narrowband interference circuits enable low-noise and high-rate photon counting for InGaAs/InP avalanche photodiodes[J]. Optics Express, 31, 7515-7522(2023).

    [16] Tian Y, Lin Z B, Zhao Y L. The excess noise characteristics of InGaAs/InP APD in consideration of nonlinearity effect[J]. Proceedings of SPIE, 12154, 121540T(2022).

    [17] Li X Z, Zhang J Y, Yue C et al. High performance visible-SWIR flexible photodetector based on large-area InGaAs/InP PIN structure[J]. Scientific Reports, 12, 7681(2022).

    [18] Wu W, Shan X, Long Y Q et al. Free-running single-photon detection via GHz gated InGaAs/InP APD for high time resolution and count rate up to 500 mcount/s[J]. Micromachines, 14, 437(2023).

    [19] He T T, Yang X H, Tang Y S et al. High photon detection efficiency InGaAs/InP single photon avalanche diode at 250 K[J]. Journal of Semiconductors, 43, 102301(2022).

    [20] Karnik T S, Dao K P, Du Q Y et al. High-efficiency mid-infrared InGaAs/InP arrayed waveguide gratings[J]. Optics Express, 31, 5056-5068(2023).

    [21] Braga O M, Delfino C A, Kawabata R M S et al. Investigation of InGaAs/InP photodiode surface passivation using epitaxial regrowth of InP via photoluminescence and photocurrent[J]. Materials Science in Semiconductor Processing, 154, 107200(2023).

    [22] Zhu X, Zhang Y W, Zhang S N et al. Defect energy levels in monoclinic β-Ga2O3[J]. Journal of Luminescence, 246, 118801(2022).

    [23] Lian W T, Jiang C H, Yin Y W et al. Revealing composition and structure dependent deep-level defect in antimony trisulfide photovoltaics[J]. Nature Communications, 12, 3260(2021).

    [24] Zhou X Q, Ning L X, Qiao J W et al. Interplay of defect levels and rare earth emission centers in multimode luminescent phosphors[J]. Nature Communications, 13, 7589(2022).

    [25] Wu X J, Ye H F, Ai J et al. Application progress of silicon photomultiplier in radiation detection[J]. Laser & Optoelectronics Progress, 59, 2100004(2022).

    [26] Yun J, Bae M S, Baek J S et al. Modeling of optimized lattice mismatch by carbon-dioxide laser annealing on (In, Ga) Co-doped ZnO multi-deposition thin films introducing designed bottom layers[J]. Nanomaterials, 13, 45(2022).

    [27] Li S C, Liang H Y, Li C et al. Lattice mismatch in Ni3Al-based alloy for efficient oxygen evolution[J]. Journal of Materials Science & Technology, 106, 19-27(2022).

    [28] Tian Y, Feng P, Zhu C Q et al. Nearly lattice-matched GaN distributed Bragg reflectors with enhanced performance[J]. Materials, 15, 3536(2022).

    [29] Ke S Y, Zhou J R, Huang D L et al. Polycrystalline Ge intermediate layer for Ge/Si wafer bonding and defect elimination in Si (SOI)-based exfoliated Ge film[J]. Vacuum, 172, 109047(2020).

    [30] Ke S Y, Ye Y J, Lin S M et al. Low-temperature oxide-free silicon and germanium wafer bonding based on a sputtered amorphous Ge[J]. Applied Physics Letters, 112, 041601(2018).

    [31] Ke S Y, Lin S M, Ye Y J et al. Temperature-dependent interface characteristic of silicon wafer bonding based on an amorphous germanium layer deposited by DC-magnetron sputtering[J]. Applied Surface Science, 434, 433-439(2018).

    [32] Huang Z W, Mao Y C, Lin G Y et al. Low dark current broadband 360-1650 nm ITO/Ag/n-Si Schottky photodetectors[J]. Optics Express, 26, 5827-5834(2018).

    [33] Liu C X, Lu Y, Ding W J et al. One-dimensional and two-dimensional Er3+-doped germanate glass waveguides by combination of He+ ion implantation and precise diamond blade dicing[J]. Vacuum, 209, 111743(2023).

    [34] Harada S, Sakane H, Mii T et al. Suppression of partial dislocation glide motion during contraction of stacking faults in SiC epitaxial layers by hydrogen ion implantation[J]. Applied Physics Express, 16, 021001(2023).

    [35] Bao S Y, Mu H L, Zhou J R et al. Effect of different crystalline Ge film bonding layers on properties of InGaAs/Si avalanche photodiodes[J]. Chinese Journal of Lasers, 50, 1403001(2023).

    [36] Zhou J R, Bao S Y, She S X et al. Effect of a-Si1-xGex bonding layer with different Ge components on the performance of InGaAs/Si avalanche photodiode[J]. Acta Photonica Sinica, 51, 0951611(2022).

    Juan Zhang, Er Yao, Shaoying Ke. Optimal Design of Charge-Free Layer InGaAs/Si Avalanche Photodetector[J]. Acta Optica Sinica, 2024, 44(5): 0504001
    Download Citation