• Journal of Semiconductors
  • Vol. 41, Issue 9, 090401 (2020)
Jun Liu1、2, Zhijie Wang1、2, and Yong Lei3
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Institut für Physik & IMN MacroNano® (ZIK), Technische Universität Ilmenau, Ilmenau 98693, Germany
  • show less
    DOI: 10.1088/1674-4926/41/9/090401 Cite this Article
    Jun Liu, Zhijie Wang, Yong Lei. A close step towards industrialized application of solar water splitting[J]. Journal of Semiconductors, 2020, 41(9): 090401 Copy Citation Text show less
    References

    [1] A Fujishima, K Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37(1972).

    [2] X An, T Li, B Wen et al. New insights into defect-mediated heterostructures for photoelectrochemical water splitting. Adv Energy Mater, 6, 1502268(2016).

    [3] X D Wang, Y F Xu, H S Rao et al. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energ Environ Sci, 9, 1468(2016).

    [4] B Wu, D Liu, S Mubeen et al. Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J Am Chem Soc, 138, 1114(2016).

    [5] L Zhang, X Ye, M Boloor et al. Significantly enhanced photocurrent for water oxidation in monolithic Mo:BiVO4/SnO2/Si by thermally increasing the minority carrier diffusion length. Energ Environ Sci, 9, 2044(2016).

    [6] J Luo, L Steier, M K Son et al. Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett, 16, 1848(2016).

    [7] K Domen, S Naito, M Soma et al. Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst. J Chem Soc Chem Commun, 12, 543(1980).

    [8] Z Zou, J Ye, K Sayama et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 414, 625(2001).

    [9] K Maeda, T Takata, M Hara et al. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc, 127, 8286(2005).

    [10] J Liu, Y Liu, N Liu et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 347, 970(2015).

    [11] T Takata, J Jiang, Y Sakata et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature, 581, 411(2020).

    [12] K Maeda, K Domen. Photocatalytic water eplitting: Recent progress and future challenges. J Phys Chem Lett, 1, 2655(2010).

    [13] Z Wang, Y Inoue, T Hisatomi et al. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat Catal, 1, 756(2018).

    [14] Q Wang, M Nakabayashi, T Hisatomi et al. Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nat Mater, 18, 827(2019).

    Jun Liu, Zhijie Wang, Yong Lei. A close step towards industrialized application of solar water splitting[J]. Journal of Semiconductors, 2020, 41(9): 090401
    Download Citation