• Journal of Semiconductors
  • Vol. 41, Issue 9, 090401 (2020)
Jun Liu1、2, Zhijie Wang1、2, and Yong Lei3
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Institut für Physik & IMN MacroNano® (ZIK), Technische Universität Ilmenau, Ilmenau 98693, Germany
  • show less
    DOI: 10.1088/1674-4926/41/9/090401 Cite this Article
    Jun Liu, Zhijie Wang, Yong Lei. A close step towards industrialized application of solar water splitting[J]. Journal of Semiconductors, 2020, 41(9): 090401 Copy Citation Text show less
    Photocatalytic water-splitting activities. (a) Time course of H2 and O2 evolution on SrTiO3:Al loaded with various cocatalysts during photoirradiation. Left, loaded with Rh (0.1 wt%)/Cr2O3 (0.05 wt%) by two-step photodeposition. Middle, loaded with Rh (0.1 wt%)/Cr2O3 (0.05 wt%)/CoOOH (0.05 wt%) by three-step photodeposition. Right, loaded with Rh (0.1 wt%)-Cr (0.1 wt%) oxide by co-impregnation. (b) Ultraviolet-visible diffuse reflectance spectrum of bare SrTiO3:Al (black solid line) and wavelength dependence of external quantum efficiency (EQE) during water splitting on Rh (0.1 wt%)/Cr2O3 (0.05 wt%)/CoOOH (0.05 wt%)-loaded SrTiO3:Al (red symbols).
    Fig. 1. Photocatalytic water-splitting activities. (a) Time course of H2 and O2 evolution on SrTiO3:Al loaded with various cocatalysts during photoirradiation. Left, loaded with Rh (0.1 wt%)/Cr2O3 (0.05 wt%) by two-step photodeposition. Middle, loaded with Rh (0.1 wt%)/Cr2O3 (0.05 wt%)/CoOOH (0.05 wt%) by three-step photodeposition. Right, loaded with Rh (0.1 wt%)-Cr (0.1 wt%) oxide by co-impregnation. (b) Ultraviolet-visible diffuse reflectance spectrum of bare SrTiO3:Al (black solid line) and wavelength dependence of external quantum efficiency (EQE) during water splitting on Rh (0.1 wt%)/Cr2O3 (0.05 wt%)/CoOOH (0.05 wt%)-loaded SrTiO3:Al (red symbols).
    Transmission electron microscopy. (a) Selected-area electron diffraction pattern obtained from SrTiO3:Al loaded with Rh (0.1 wt%)/Cr2O3 (0.05 wt%)/CoOOH (0.05 wt%). (b) Corresponding transmission electron microscopy image of a particle. (c) Particle morphology and crystal orientation.
    Fig. 2. Transmission electron microscopy. (a) Selected-area electron diffraction pattern obtained from SrTiO3:Al loaded with Rh (0.1 wt%)/Cr2O3 (0.05 wt%)/CoOOH (0.05 wt%). (b) Corresponding transmission electron microscopy image of a particle. (c) Particle morphology and crystal orientation.
    Simulations of photocarrier distributions in SrTiO3:Al particles. (a) Mapping of conduction-band energy, Ec. (b) Density of electrons (e-), n. (c) Density of holes (h+), p. (d) Energy band diagram. (e) Electron and hole densities as functions of position (x′, y′) with work function difference ΔWel = 0.2 eV. (f) Effect of ΔWel on electron-to-hole-density ratio at the {100} and {110} facets.
    Fig. 3. Simulations of photocarrier distributions in SrTiO3:Al particles. (a) Mapping of conduction-band energy, Ec. (b) Density of electrons (e-), n. (c) Density of holes (h+), p. (d) Energy band diagram. (e) Electron and hole densities as functions of position (x′, y′) with work function difference ΔWel = 0.2 eV. (f) Effect of ΔWel on electron-to-hole-density ratio at the {100} and {110} facets.
    Jun Liu, Zhijie Wang, Yong Lei. A close step towards industrialized application of solar water splitting[J]. Journal of Semiconductors, 2020, 41(9): 090401
    Download Citation