• Photonic Sensors
  • Vol. 10, Issue 2, 123 (2020)
Nur Abdillah SIDDIQ1、*, Wu Yi CHONG2, Yono Hadi PRAMONO1, Melania Suweni MUNTINI1, Asnawi ASNAWI1、3, and Harith AHMAD2、4
Author Affiliations
  • 1Department of Physics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
  • 2Photonics Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia
  • 3Department of Physics, Surabaya State University, Surabaya 60231, Indonesia
  • 4Department of Physics, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
  • show less
    DOI: 10.1007/s13320-019-0563-8 Cite this Article
    Nur Abdillah SIDDIQ, Wu Yi CHONG, Yono Hadi PRAMONO, Melania Suweni MUNTINI, Asnawi ASNAWI, Harith AHMAD. All-Optical Humidity Sensor Using SnO2 Nanoparticle Drop Coated on Straight Channel Optical Waveguide[J]. Photonic Sensors, 2020, 10(2): 123 Copy Citation Text show less
    References

    [1] Y. Kuwahara, S. Tamagawa, T. Fujitani, and H. Yamashita, “Removal of phosphate from aqueous solution using layered double hydroxide prepared from waste iron-making slag,” Bulletin of the Chemical Society of Japan, 2016, 89(4): 472–480.

    [2] J. Jiang, W. Zhou, Y. Gao, L. Wang, F. Wang, H. Chu, et al., “Feasibility of manufacturing ultra-high performance cement-based composites (UHPCCs) with recycled sand: a preliminary study,” Waste Management, 2019, 83: 104–112.

    [3] G. Y. Chen, X. Wu, Y. Q. Kang, L. Yu, T. M. Monro, D. G. Lancaster, et al., “Ultra-fast hygrometer based on U-shaped optical microfiber with nanoporous polyelectrolyte coating,” Scientific Reports, 2017, 7(1): 1–7.

    [4] S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, et al., “Ultrafast graphene oxide humidity sensors,” ACS Nano, 2013, 7(12): 11166–11173.

    [5] W. Xuan, M. He, N. Meng, X. He, W. Wang, J. Chen, et al., “Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer,” Scientific Reports, 2014, 4: 7206.

    [6] Y. Peng, Y. Zhao, M. Q. Chen, and F. Xia, “Research advances in microfiber humidity sensors,” Small, 2018, 14(29): 1800524.

    [7] M. Consales, A. Buosciolo, A. Cutolo, G. Breglio, A. Irace, S. Buontempo, et al., “Fiber optic humidity sensors for high-energy physics applications at CERN,” Sensors and Actuators B: Chemical, 2011, 159(1): 66–74.

    [8] D. Zhang, X. Zong, Z. Wu, and Y. Zhang, “Ultrahigh-performance impedance humidity sensor based on layer-by-layer self-assembled tin disulfide/titanium dioxide nanohybrid film,” Sensors and Actuators B: Chemical, 2018, 266: 52–62.

    [9] D. Zhang, H. Chen, P. Li, D. Wang, and Z. Yang, “Humidity sensing properties of metal organic framework-derived hollow ball-like TiO2 coated QCM sensor,” IEEE Sensors Journal, 2019, 19(8): 2909–2915.

    [10] D. Zhang, H. Chang, P. Li, R. Liu, and Q. Xue, “Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite,” Sensors and Actuators B: Chemical, 2016, 225: 233–240.

    [11] D. Zhang, D. Wang, X. Zong, G. Dong, and Y. Zhang, “High-performance QCM humidity sensor based on graphene oxide/tin oxide/polyaniline ternary nanocomposite prepared by in-situ oxidative polymerization method,” Sensors and Actuators B: Chemical, 2018, 262: 531–541.

    [12] X. Song, Q. Qi, T. Zhang, and C. Wang, “A humidity sensor based on KCl-doped SnO2 nanofibers,” Sensors and Actuators B: Chemical, 2009, 138(1): 368–373.

    [13] Q. Kuang, C. Lao, Z. L. Wang, Z. Xie, and L. Zheng, “High-sensitivity humidity sensor based on a single SnO2 nanowire,” Journal of the American Chemical Society, 2007, 129(19): 6070–6071.

    [14] Z. A. Ansari, R. N. Karekar, and R. C. Aiyer, “Humidity sensor using planar optical waveguides with claddings of various oxide materials,” Thin Solid Films, 1997, 305(1–2): 330–335.

    [15] J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sensors and Actuators B: Chemical, 2016, 233: 7–16.

    [16] W. H. Lim, Y. K. Yap, W. Y. Chong, and H. Ahmad, “All-optical graphene oxide humidity sensors,” Sensors, 2014, 14(12): 24329–24337.

    [17] Z. Harith, N. Irawati, M. Batumalay, H. A. Rafaie, G. Yun, S. W. Harun, et al., “Relative humidity sensor employing optical fibers coated with ZnO nanostructures,” Indian Journal of Science and Technology, 2015, 8(35): 0974–6846.

    [18] L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microwave and Optical Technology Letters, 2015, 57(2): 457–460.

    [19] N. Irawati, H. A. Rahman, H. Ahmad, and S. W. Harun, “A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating,” Measurement, 2017, 99: 128–133.

    [20] S. Zhan, D. Li, S. Liang, X. Chen, and X. Li, “A novel flexible room temperature ethanol gas sensor based on SnO2 doped polydiallyldimethylammonium chloride,” Sensors, 2013, 13(4): 4378–4389.

    [21] A. Asnawi, G. Yudoyono, and Y. H. Pramono, “Fabrication of straight optical waveguides based on SnO2 nanomaterials,” Universal Journal of Physics and Application, 2017, 11(4): 135–138.

    [22] D. Zhang, H. Chang, and R. Liu, “Humidity-sensing properties of one-step hydrothermally synthesized tin dioxide-decorated graphene nanocomposite on polyimide substrate,” Journal of Electronic Materials, 2016, 45(8): 4275–4281.

    [23] G. J. Li, X. H. Zhang, and S. Kawi, “Relationships between sensitivity, catalytic activity, and surface areas of SnO2 gas sensors,” Sensors and Actuators B: Chemical, 1999, 60(1): 64–70.

    [24] S. K. Nayar and S. G. Narasimhan, “Vision in bad weather,” in Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999, pp. 820–827.

    [25] R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sensors and Actuators B: Chemical, 2016, 222: 618–624.

    [26] A. Alvarez-Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE Sensors Journal, 2004, 4(1): 52–56.

    [27] C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensors and Actuators B: Chemical, 2000, 69(1–2): 127–131.

    [28] B. D. Gupta, “A novel probe for a fiber optic humidity sensor,” Sensors and Actuators B: Chemical, 2001, 80(2): 132–135.

    [29] D. C. Bownass, J. S. Barton, and J. D. Jones, “Serially multiplexed point sensor for the detection of high humidity in passive optical networks,” Optics Letters, 1997, 22(5): 346–348.

    [30] J. Ascorbe, J. M. Corres, F. J. Arregui, and I. R. Matias, “Recent developments in fiber optics humidity sensors,” Sensors, 2017, 17(4): 1–23.

    [31] K. R. Kribich, R. Copperwhite, H. Barry, B. Kolodziejczyk, J. M. Sabattié, K. O’Dwyer, et al., “Novel chemical sensor/biosensor platform based on optical multimode interference (MMI) couplers,” Sensors and Actuators B: Chemical, 2005, 107(1): 188–192.

    [32] M. V. Fuke, A. Vijayan, P. Kanitkar, M. Kulkarni, B. B. Kale, and R. C. Aiyer, “Ag-polyaniline nanocomposite cladded planar optical waveguide based humidity sensor,” Journal of Materials Science: Materials in Electronics, 2009, 20(8): 695–703.

    [33] M. Ghadiry, M. Gholami, C. K. Lai, H. Ahmad, and W. Y. Chong, “Ultra-sensitive humidity sensor based on optical properties of graphene oxide and nano-anatase TiO2,” PLoS One, 2016, 11(4):1–14.

    [34] M. Ghadiry, M. Gholami, L. C. Kong, C. W. Yi, H. Ahmad, and Y. Alias, “Nano-anatase TiO2 for high performance optical humidity sensing on chip,” Sensors, 2015, 16(1): 39.

    [35] V. K. Tomer and S. Duhan, “A facile nanocasting synthesis of mesoporous Ag-doped SnO2 nanostructures with enhanced humidity sensing performance,” Sensors and Actuators B: Chemical, 2016, 223: 750–760.

    [36] H. Zhang, J. Feng, T. Fei, S. Liu, and T. Zhang, “SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature,” Sensors and Actuators B: Chemical, 2014, 190: 472–478.

    [37] D. Zhang, J. Tong, and B. Xia, “Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly,” Sensors and Actuators B: Chemical, 2014, 197: 66–72.

    [38] D. Zhang, J. Tong, B. Xia, and Q. Xue, “Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film,” Sensors and Actuators B: Chemical, 2014, 203: 263–270.

    [39] D. Zhang, Y. Sun, P. Li, and Y. Zhang, “Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing,” ACS Applied Materials & Interfaces, 2016, 8(22): 14142–14149.

    [40] W. P. Tai and J. H. Oh, “Fabrication and humidity sensing properties of nanostructured TiO2 SnO2 thin films,” Sensors and Actuators B: Chemical, 2002, 85(1–2): 154–157.

    Nur Abdillah SIDDIQ, Wu Yi CHONG, Yono Hadi PRAMONO, Melania Suweni MUNTINI, Asnawi ASNAWI, Harith AHMAD. All-Optical Humidity Sensor Using SnO2 Nanoparticle Drop Coated on Straight Channel Optical Waveguide[J]. Photonic Sensors, 2020, 10(2): 123
    Download Citation