• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 6, 1102 (2022)
Zai-Ping LIN*, Bo-Yang LI, Miao LI, Long-Guang WANG, Tian-Hao WU, Yi-Hang LUO, Chao XIAO, Ruo-Jing LI, and Wei An
Author Affiliations
  • College of electronic science and technology,National University of Defense Technology,Changsha 410073,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.06.020 Cite this Article
    Zai-Ping LIN, Bo-Yang LI, Miao LI, Long-Guang WANG, Tian-Hao WU, Yi-Hang LUO, Chao XIAO, Ruo-Jing LI, Wei An. Light-weight infrared small target detection combining cross-scale feature fusion with bottleneck attention module[J]. Journal of Infrared and Millimeter Waves, 2022, 41(6): 1102 Copy Citation Text show less
    The main challenges of infrared small target detection.
    Fig. 1. The main challenges of infrared small target detection.
    An illustration of the proposed light-weighted infrared small target detection network
    Fig. 2. An illustration of the proposed light-weighted infrared small target detection network
    The network of classic U-shape and our proposed LIRDNet
    Fig. 3. The network of classic U-shape and our proposed LIRDNet
    Bottleneck attention module
    Fig. 4. Bottleneck attention module
    Samples of eight connected neighborhood clustering module. If the eight neighborhoods of two candidate points have intersection area,they are identified as the same target ID.
    Fig. 5. Samples of eight connected neighborhood clustering module. If the eight neighborhoods of two candidate points have intersection area,they are identified as the same target ID.
    Examples of(a)original images and corresponding qualitative comparison results on(b)Tophat,(c)IPI,(d)RIPT,(e)ACM,(f)DNANet,(g)LIRDNet,(h)ground truth masks.
    Fig. 6. Examples of(a)original images and corresponding qualitative comparison results on(b)Tophat,(c)IPI,(d)RIPT,(e)ACM,(f)DNANet,(g)LIRDNet,(h)ground truth masks.
    Examples of(a)original images and corresponding 3D visualization results on(b)Tophat,(c)IPI,(d)RIPT,(e)ACM,(f)DNANet,(g)LIRDNet,(h)ground truth masks.
    Fig. 7. Examples of(a)original images and corresponding 3D visualization results on(b)Tophat,(c)IPI,(d)RIPT,(e)ACM,(f)DNANet,(g)LIRDNet,(h)ground truth masks.
    The ROC curve of our proposed LIRDNet under different signal-clutter-ratio(SCR)values(a)SCR<3,(b)3<SCR<6,(c)6<SCR.
    Fig. 8. The ROC curve of our proposed LIRDNet under different signal-clutter-ratio(SCR)values(a)SCR<3,(b)3
    Visualization map of our proposed LIRDNet and backbone network ResUnet on different convolutional layers
    Fig. 9. Visualization map of our proposed LIRDNet and backbone network ResUnet on different convolutional layers
    编号滤波器数量输入尺寸输出尺寸
    预处理-1,256,2563,256,256
    Fde0,083,256,2568,256,256
    BAM0,0-8,256,2568,256,256
    Fde1,0168,128,12816,128,128
    BAM1,0-16,128,12816,128,128
    Fde2,03216,64,6432,64,64
    BAM2,0-32,64,6432,64,64
    Fde3,06432,32,3264,32,32
    Fde2,13264,64,6432,64,64
    Fde1,11632,128,12816,128,128
    Fde0,1816,256,2568,256,256
    Ffinal18,256,2561,256,256
    Table 1. Number of model parameters for LIRDNet and the corresponding size of input and output feature map
    方法NUAA-SIRST(条件1)NUAA-SIRST(条件2)
    IoU/(%)Pd/(%)Fa(10-6IoU/(%)Pd/(%)Fa(10-6
    Top-Hat17.6682.5634.957.14379.841012
    Max-Median3.9052.2949.324.17269.2055.33
    TLLCM0.9677.9858291.02979.095899
    IPI22.7786.2310.6525.6785.5511.47
    RIPT11.2477.9817.0311.0579.0822.61
    MDvsFA-CGAN63.2690.7549.3360.3089.3556.35
    ACM71.7896.333.57070.3393.913.728
    ALCNet74.3997.1622.7773.3396.5730.47
    DNANet-Light74.4698.1915.7974.7296.9518.18
    LIRDNet-ResNet1072.5297.2422.1773.4797.7126.23
    LIRDNet-ResNet1876.4798.0216.8574.8997.3316.09
    LIRDNet-ResNet3477.8199.211.24075.1897.337.060
    Table 2. Performance of different methods on IoU, Pd, and Fa
    方法#ParamsFLOPsmIoU/Pd/Fa
    ACM0.52 M1.75 G71.78/96.33/3.570
    ALCNet0.50 M1.48 G74.39/97.16/22.77
    MDvsFA-cGAN3.76 M868.75 G63.26/90.75/49.33
    DNANet-Light0.48 M1.88 G74.46/98.19/15.79
    LIRDNet-Res180.25 M1.43 G76.47/98.02/16.85
    Table 3. Performance of different deep learning-based methods on the number of model parameters, FLOPs, IoU, Pd, and Fa
    方法计算单元推理时间 /s浮点运算量 /G
    DNANet-Light天玑800U0.3221.88 G
    DNANet-Light麒麟9800.2111.88 G
    DNANet-LightNvidia 10700.1021.88 G
    DNANet-LightNvidia 30900.0051.88 G
    LIRDNet天玑800U0.1981.43 G
    LIRDNet麒麟9800.0971.43 G
    LIRDNetNvidia 10700.0761.43 G
    LIRDNetNvidia 30900.0021.43 G
    Table 4. Inference time and FLOPs performance of different deep learning-based methods on different computational units (Smart Phone-Chip, PC-GPU)
    Method#ParamsFLOPsmIoU/Pd/Fa

    LIRDNet-Res18

    w/o CFM

    0.232M1.184G73.01/96.58/24.13

    LIRDNet-Res18

    w/o CFM L1/L2

    0.234M1.204G73.39/97.16/34.59

    LIRDNet-Res18

    w/o CFM L1

    0.243M1.362G74.23/97.16/24.37
    LIRDNet-Res180.248M1.435 G76.47/98.02/16.85
    Table 5. Ablation study on our proposed CFM module
    Method#ParamsFLOPsmIoU/Pd/Fa

    LIRDNet-Res18

    w/o BAM

    0.245M1.415 G74.52/96.58/21.29

    LIRDNet-Res18

    w/o BAM SA

    0.247M1.422 G75.37/97.16/16.14

    LIRDNet-Res18

    w/o BAM CA

    0.247M1.434 G75.43/97.24/25.54
    LIRDNet-Res180.248M1.435 G76.47/98.02/16.85
    Table 6. Ablation study on our introduced BAM module
    Zai-Ping LIN, Bo-Yang LI, Miao LI, Long-Guang WANG, Tian-Hao WU, Yi-Hang LUO, Chao XIAO, Ruo-Jing LI, Wei An. Light-weight infrared small target detection combining cross-scale feature fusion with bottleneck attention module[J]. Journal of Infrared and Millimeter Waves, 2022, 41(6): 1102
    Download Citation