• Acta Optica Sinica
  • Vol. 41, Issue 8, 0823006 (2021)
Feng Wu1、2, Jiaju Wu1, Zhiwei Guo1, Yong Sun1, Yunhui Li1, Haitao Jiang1、*, and Hong Chen1
Author Affiliations
  • 1Key Laboratory of Advanced Microstructure Materials, Ministry of Education, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 2School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou,Guangdong 510665, China
  • show less
    DOI: 10.3788/AOS202141.0823006 Cite this Article Set citation alerts
    Feng Wu, Jiaju Wu, Zhiwei Guo, Yong Sun, Yunhui Li, Haitao Jiang, Hong Chen. Increase of Goos-Hänchen Shift Based on Exceptional Optical Bound States[J]. Acta Optica Sinica, 2021, 41(8): 0823006 Copy Citation Text show less
    References

    [1] Goos F, Hänchen H. Ein neuer und fundamentaler Versuch zur Totalreflexion[J]. Annalen Der Physik, 436, 333-346(1947).

    [2] Artmann K. Berechnung der Seitenversetzung des totalreflektierten Strahles[J]. Annalen Der Physik, 437, 87-102(1948). http://www.mendeley.com/research/berechnung-der-seitenversetzung-des-totalreflektieren-strahles-calculation-lateral-shift-totally-reflected-beams-1/

    [3] Yan T K, Liang B M, Jiang Q et al. A research review of the Goos-Hänchen shift[J]. Optical Instruments, 36, 90-94(2014).

    [4] Wen J S, Wang L G. The discovery and development of the Goos-Hänchen shift[J]. Physics, 45, 485-493(2016).

    [5] Yu T Y, Li H G, Cao Z Q et al. Oscillating wave displacement sensor using the enhanced Goos-Hänchen effect in a symmetrical metal-cladding optical waveguide[J]. Optics Letters, 33, 1001-1003(2008). http://www.ncbi.nlm.nih.gov/pubmed/18451966

    [6] Wang X P, Yin C, Sun J J et al. High-sensitivity temperature sensor using the ultrahigh order mode-enhanced Goos-Hänchen effect[J]. Optics Express, 21, 13380-13385(2013). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-11-13380

    [7] Wang X P, Sang M H, Yuan W et al. Optical relative humidity sensing based on oscillating wave-enhanced Goos-Hänchen shift[J]. IEEE Photonics Technology Letters, 28, 264-267(2016). http://smartsearch.nstl.gov.cn/paper_detail.html?id=28b352ca2f1593b6a0fb424a5a3c3bc1

    [8] Sakata T, Togo H, Shimokawa F. Reflection-type 2×2 optical waveguide switch using the Goos-Hänchen shift effect[J]. Applied Physics Letters, 76, 2841-2843(2000). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4903586

    [9] Wang X P, Yin C, Sun J J et al. Reflection-type space-division optical switch based on the electrically tuned Goos-Hänchen effect[J]. Journal of Optics, 15, 014007(2013). http://smartsearch.nstl.gov.cn/paper_detail.html?id=e20cb26f909c06e0b33113f45a5956fa

    [10] Tsakmakidis K L, Boardman A D, Hess O. ‘Trapped rainbow’ storage of light in metamaterials[J]. Nature, 450, 397-401(2007). http://www.nature.com/articles/nature06285

    [11] Sattari H, Ebadollahi-Bakhtevar S, Sahrai M. Proposal for a 1 × 3 Goos-Hänchen shift-assisted de/multiplexer based on a multilayer structure containing quantum dots[J]. Journal of Applied Physics, 120, 133102(2016). http://scitation.aip.org/content/aip/journal/jap/120/13/10.1063/1.4964443

    [12] Luo L, Tang T T. Goos-Hänchen effect in Kretschmann configuration with hyperbolic metamaterials[J]. Superlattices and Microstructures, 94, 85-92(2016). http://smartsearch.nstl.gov.cn/paper_detail.html?id=eef77e994ad592ef58f2e54676818a15

    [13] Chen X, Shen M, Zhang Z F et al. Tunable lateral shift and polarization beam splitting of the transmitted light beam through electro-optic crystals[J]. Journal of Applied Physics, 104, 123101(2008). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4915374

    [14] Li X, Wang P, Xing F et al. Experimental observation of a giant Goos-Hänchen shift in graphene using a beam splitter scanning method[J]. Optics Letters, 39, 5574-5577(2014). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-39-19-5574

    [15] Wild W J, Giles C L. Goos-Hänchen shifts from absorbing media[J]. Physical Review A, 25, 2099-2101(1982). http://prola.aps.org/abstract/PRA/v25/i4/p2099_1

    [16] Lai H M, Chan S W. Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing media[J]. Optics Letters, 27, 680-682(2002). http://europepmc.org/abstract/MED/18007897

    [17] Jiang L Y, Wang Q K, Xiang Y J et al. Electrically tunable Goos-Hänchen shift of light beam reflected from a graphene-on-dielectric surface[J]. IEEE Photonics Journal, 5, 6500108(2013). http://ieeexplore.ieee.org/document/6509943/

    [18] Xu C R, Xu J P, Song G et al. Enhanced displacements in reflected beams at hyperbolic metamaterials[J]. Optics Express, 24, 21767-21776(2016). http://www.ncbi.nlm.nih.gov/pubmed/27661914

    [19] Kaiser R, Levy Y, Fleming J et al. Resonances in a single thin dielectric layer: enhancement of the Goos-Hänchen shift[J]. Pure and Applied Optics: Journal of the European Optical Society Part A, 5, 891-898(1996). http://www.ingentaconnect.com/content/iop/pao/1996/00000005/00000006/art00015

    [20] Wang L G, Chen H, Zhu S Y. Large negative Goos-Hänchen shift from a weakly absorbing dielectric slab[J]. Optics Letters, 30, 2936-2938(2005). http://www.opticsinfobase.org/ol/abstract.cfm?id=85962

    [21] Wen J S, Zhang J X, Wang L G et al. Goos-Hänchen shifts in an epsilon-near-zero slab[J]. Journal of the Optical Society of America B, 34, 2310-2316(2017). http://www.osapublishing.org/josab/abstract.cfm?uri=josab-34-11-2310

    [22] Wong Y P, Miao Y, Skarda J et al. Large negative and positive optical Goos-Hänchen shift in photonic crystals[J]. Optics Letters, 43, 2803-2806(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=635246f024e67bc465d61a80cf92045d

    [23] Chen X, Wang L G, Li C F. Transmission gap, Bragg-like reflection, and Goos-Hänchen shifts near the Dirac point inside a negative-zero-positive index metamaterial slab[J]. Physical Review A, 80, 043839(2009). http://www.oalib.com/paper/3163656

    [24] Li C F, Wang Q. Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration[J]. Physical Review E, 69, 055601(2004). http://europepmc.org/abstract/MED/15244873

    [25] Yin X B, Hesselink L, Liu Z W et al. Large positive and negative lateral optical beam displacements due to surface plasmon resonance[J]. Applied Physics Letters, 85, 372-374(2004).

    [26] Felbacq D, Moreau A, Smaâli R. Goos- Hänchen effect in the gaps of photonic crystals[J]. Optics Letters, 28, 1633-1635(2003). http://www.opticsinfobase.org/viewmedia.cfm?id=74265&seq=0

    [27] Soboleva I V, Moskalenko V V, Fedyanin A A. Giant Goos-Hänchen effect and Fano resonance at photonic crystal surfaces[J]. Physical Review Letters, 108, 123901(2012). http://www.europepmc.org/abstract/MED/22540582

    [28] Wan Y H, Zheng Z, Kong W J et al. Nearly three orders of magnitude enhancement of Goos-Hänchen shift by exciting Bloch surface wave[J]. Optics Express, 20, 8998-9003(2012). http://www.opticsinfobase.org/abstract.cfm?uri=oe-20-8-8998

    [29] Chen Y, Ban Y, Zhu Q B et al. Graphene-assisted resonant transmission and enhanced Goos-Hänchen shift in a frustrated total internal reflection configuration[J]. Optics Letters, 41, 4468-4471(2016). http://dx.doi.org/10.1364/ol.41.004468

    [30] Cheng M, Fu P, Chen X Y et al. Giant and tunable Goos-Hanchen shifts for attenuated total reflection structure containing graphene[J]. Journal of the Optical Society of America B, 31, 2325-2329(2014). http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-31-10-2325

    [31] Foresi J S, Villeneuve P R, Ferrera J et al. Photonic-bandgap microcavities in optical waveguides[J]. Nature, 390, 143-145(1997).

    [32] Liang G Q, Han P, Wang H Z. Narrow frequency and sharp angular defect mode in one-dimensional photonic crystals from a photonic heterostructure[J]. Optics Letters, 29, 192-194(2004).

    [33] van Popta A C, Hawkeye M M, Sit J C et al. Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition[J]. Optics Letters, 29, 2545-2547(2004).

    [34] Sasin M E, Seisyan R P, Kalitteevski M A et al. Tamm plasmon polaritons: slow and spatially compact light[J]. Applied Physics Letters, 92, 251112(2008). http://scitation.aip.org/content/aip/journal/apl/92/25/10.1063/1.2952486

    [35] Sánchez A, Porta A V, Orozco S. Photonic band-gap and defect modes of a one-dimensional photonic crystal under localized compression[J]. Journal of Applied Physics, 121, 173101(2017). http://adsabs.harvard.edu/abs/2017JAP...121q3101S

    [36] Zhao L M, Zhou Y S, Wang A H. General way to obtain multiple defect modes in multiple photonic quantum-well structures[J]. Optics Letters, 43, 5387-5390(2018). http://www.ncbi.nlm.nih.gov/pubmed/30383014

    [37] Lu G, Wu F, Zheng M J et al. Perfect optical absorbers in a wide range of incidence by photonic heterostructures containing layered hyperbolic metamaterials[J]. Optics Express, 27, 5326-5336(2019). http://www.researchgate.net/publication/331057944_Perfect_optical_absorbers_in_a_wide_range_of_incidence_by_photonic_heterostructures_containing_layered_hyperbolic_metamaterials

    [38] Wu F, Wu J J, Fan C F et al. Omnidirectional optical filtering based on two kinds of photonic band gaps with different angle-dependent properties[J]. EPL (Europhysics Letters), 129, 34004(2020). http://iopscience.iop.org/article/10.1209/0295-5075/129/34004

    [39] Qiao F, Zhang C, Wan J et al. Photonic quantum-well structures: multiple channeled filtering phenomena[J]. Applied Physics Letters, 77, 3698-3700(2000). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4905200

    [40] Du G Q, Jiang H T, Wang Z S et al. Heterostructure-based optical absorbers[J]. Journal of the Optical Society of America B, 27, 1757-1762(2010).

    [41] Xue C H, Jiang H T, Lu H et al. Efficient third-harmonic generation based on Tamm plasmon polaritons[J]. Optics Letters, 38, 959-961(2013). http://europepmc.org/abstract/med/23503273

    [42] Xue C H, Wu F, Jiang H T et al. Wide-angle spectrally selective perfect absorber by utilizing dispersionless Tamm plasmon polaritons[J]. Scientific Reports, 6, 39418(2016). http://europepmc.org/articles/PMC5171821/

    [43] Guo Z W, Wu F, Xue C H et al. Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect[J]. Journal of Applied Physics, 124, 103104(2018). http://arxiv.org/abs/1804.04805

    [44] Wu J J, Wu F, Xue C H et al. Wide-angle ultrasensitive biosensors based on edge states in heterostructures containing hyperbolic metamaterials[J]. Optics Express, 27, 24835-24846(2019).

    [45] Mekis A, Chen J C, Kurland I et al. High transmission through sharp bends in photonic crystal waveguides[J]. Physical Review Letters, 77, 3787-3790(1996). http://europepmc.org/abstract/MED/10062308

    [46] Painter O, Lee R K, Scherer A et al. Two-dimensional photonic band-gap defect mode laser[J]. Science, 284, 1819-1821(1999). http://www.ncbi.nlm.nih.gov/pubmed/?term=10364550[uid]

    [47] Painter O J, Husain A, Scherer A et al. Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP[J]. Journal of Lightwave Technology, 17, 2082-2088(1999).

    [48] Akahane Y, Asano T, Song B S et al. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 425, 944-947(2003).

    [49] Wang F, Cheng Y Z, Wang X et al. Narrow band filter at 1550 nm based on quasi-one-dimensional photonic crystal with a mirror-symmetric heterostructure[J]. Materials, 11, 1099(2018). http://europepmc.org/abstract/MED/29954147

    [50] Wang Q, Wang X L, Zhang L W et al. Tunable defect modes of one-dimensional photonic crystals containing a Dirac semimetal-based metamaterial defect layer[J]. Applied Optics, 58, 94-101(2019). http://www.researchgate.net/publication/329811921_Tunable_defect_modes_of_one-dimensional_photonic_crystals_containing_a_Dirac_semimetal-based_metamaterial_defect_layer

    [51] Alu A, Engheta N. Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency[J]. IEEE Transactions on Antennas and Propagation, 51, 2558-2571(2003). http://ieeexplore.ieee.org/document/1236073/citations

    [52] Kavokin A V, Shelykh I A, Malpuech G. Lossless interface modes at the boundary between two periodic dielectric structures[J]. Physical Review B, 72, 233102(2005).

    [53] Kaliteevski M, Iorsh I, Brand S et al. Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror[J]. Physical Review B, 76, 165415(2007). http://adsabs.harvard.edu/abs/2007PhRvB..76p5415K

    [54] Guo J Y, Sun Y, Zhang Y W et al. Experimental investigation of interface states in photonic crystal heterostructures[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 78, 026607(2008). http://www.ncbi.nlm.nih.gov/pubmed/18850962

    [55] Wang L G, Zhu S Y. Giant lateral shift of a light beam at the defect mode in one-dimensional photonic crystals[J]. Optics Letters, 31, 101-103(2006). http://www.ncbi.nlm.nih.gov/pubmed/16419891

    [56] Zhao D, Ke S L, Liu Q J et al. Giant Goos-Hänchen shifts in non-Hermitian dielectric multilayers incorporated with graphene[J]. Optics Express, 26, 2817-2828(2018). http://www.ncbi.nlm.nih.gov/pubmed/29401817

    [57] Zhao D, Zhong D, Hu Y H et al. Imaginary modulation inducing giant spatial Goos-Hänchen shifts in one-dimensional defective photonic lattices[J]. Optical and Quantum Electronics, 51, 1-11(2019). http://link.springer.com/article/10.1007/s11082-019-1828-6

    [58] Tang J, Xu J, Zheng Z et al. Graphene Tamm plasmon-induced giant Goos-Hänchen shift at terahertz frequencies[J]. Chinese Optics Letters, 17, 020007(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJ49060ae120424c5e

    [59] Wu F, Wu J J, Guo Z W et al. Giant enhancement of the Goos-Hänchen shift assisted by quasibound states in the continuum[J]. Physical Review Applied, 12, 014028(2019). http://www.researchgate.net/publication/334499442_Giant_Enhancement_of_the_Goos-Hanchen_Shift_Assisted_by_Quasibound_States_in_the_Continuum

    [60] Wu J J, Wu F, Lv K et al. Giant Goos-Hänchen shift with a high reflectance assisted by interface states in photonic heterostructures[J]. Physical Review A, 101, 053838(2020). http://www.researchgate.net/publication/341466618_Giant_Goos-Hanchen_shift_with_a_high_reflectance_assisted_by_interface_states_in_photonic_heterostructures

    [61] von Neumann J, Wigner E P. Über merkwürdige diskrete Eigenwerte[M]. //The Collected Works of Eugene Paul Wigner. Berlin, Heidelberg: Springer, 291-293(1993).

    [62] Friedrich H, Wintgen D. Physical realization of bound states in the continuum[J]. Physical Review A, 31, 3964-3966(1985). http://europepmc.org/abstract/MED/9895981

    [63] Bulgakov E N, Sadreev A F. Bound states in the continuum in photonic waveguides inspired by defects[J]. Physical Review B, 78, 075105(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000018000008000052000001&idtype=cvips&gifs=Yes

    [64] Marinica D C, Borisov A G, Shabanov S V. Bound states in the continuum in photonics[J]. Physical Review Letters, 100, 183902(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT02000015000010000002000001&idtype=cvips&gifs=Yes

    [65] Dai S W, Liu L, Han D Z et al. From topologically protected coherent perfect reflection to bound states in the continuum[J]. Physical Review B, 98, 081405(2018).

    [66] Jin J C, Yin X F, Ni L F et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering[J]. Nature, 574, 501-504(2019). http://www.researchgate.net/publication/336745055_Topologically_enabled_ultrahigh-Q_guided_resonances_robust_to_out-of-plane_scattering

    [67] Koshelev K, Lepeshov S, Liu M K et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 121, 193903(2018). http://arxiv.org/abs/1809.00330

    [68] Liu Z J, Xu Y, Lin Y et al. High-Q quasibound states in the continuum for nonlinear metasurfaces[J]. Physical Review Letters, 123, 253901(2019). http://www.ncbi.nlm.nih.gov/pubmed/31922806

    [69] Wang Y F, Song J M, Dong L et al. Optical bound states in slotted high-contrast gratings[J]. Journal of the Optical Society of America B, 33, 2472-2479(2016). http://smartsearch.nstl.gov.cn/paper_detail.html?id=3d1c4a58988e2bcf2be4dbf929fbac2c

    [70] Kodigala A, Lepetit T, Gu Q et al. Lasing action from photonic bound states in continuum[J]. Nature, 541, 196-199(2017).

    [71] Midya B, Konotop V V. Coherent-perfect-absorber and laser for bound states in a continuum[J]. Optics Letters, 43, 607-610(2018). http://www.ncbi.nlm.nih.gov/pubmed/29400852

    [72] Foley J M, Young S M, Phillips J D. Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating[J]. Physical Review B, 89, 165111(2014).

    [73] Romano S, Zito G, Torino S et al. Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum[J]. Photonics Research, 6, 726-733(2018).

    [74] Liu Z S, Tibuleac S, Shin D et al. High-efficiency guided-mode resonance filter[J]. Optics Letters, 23, 1556-1558(1998).

    [75] Liu W X, Sun Y, Lai Z Q et al. Sharp optical magnetic resonances in dielectric waveguide grating structures[J]. Journal of the Optical Society of America B, 34, 1899-1904(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=268d31c62641ca2f5009c9a3dc141159

    [76] Moharam M G, Pommet D A, Grann E B et al. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach[J]. Journal of the Optical Society of America A, 12, 1077-1086(1995).

    [77] Liu W X, Li Y H, Jiang H T et al. Controlling the spectral width in compound waveguide grating structures[J]. Optics Letters, 38, 163-165(2013). http://d.wanfangdata.com.cn/periodical/47b86c7c30b229af53a20f55308f52d6

    [78] Shi X, Xue C H, Jiang H T et al. Topological description for gaps of one-dimensional symmetric all-dielectric photonic crystals[J]. Optics Express, 24, 18580-18591(2016).

    [79] Xiao M, Zhang Z, Chan C. Surface impedance and bulk band geometric phases in one-dimensional systems[J]. Physical Review X, 4, 021017(2014). http://arxiv.org/abs/1401.1309

    [80] Long Y, Ren J, Li Y H et al. Inverse design of photonic topological state via machine learning[J]. Applied Physics Letters, 114, 181105(2019).

    Feng Wu, Jiaju Wu, Zhiwei Guo, Yong Sun, Yunhui Li, Haitao Jiang, Hong Chen. Increase of Goos-Hänchen Shift Based on Exceptional Optical Bound States[J]. Acta Optica Sinica, 2021, 41(8): 0823006
    Download Citation