• Acta Optica Sinica
  • Vol. 41, Issue 8, 0823006 (2021)
Feng Wu1、2, Jiaju Wu1, Zhiwei Guo1, Yong Sun1, Yunhui Li1, Haitao Jiang1、*, and Hong Chen1
Author Affiliations
  • 1Key Laboratory of Advanced Microstructure Materials, Ministry of Education, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 2School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou,Guangdong 510665, China
  • show less
    DOI: 10.3788/AOS202141.0823006 Cite this Article Set citation alerts
    Feng Wu, Jiaju Wu, Zhiwei Guo, Yong Sun, Yunhui Li, Haitao Jiang, Hong Chen. Increase of Goos-Hänchen Shift Based on Exceptional Optical Bound States[J]. Acta Optica Sinica, 2021, 41(8): 0823006 Copy Citation Text show less
    Four-part grating-waveguide composite structure and continuous spectral bound states[59]. (a) Schematic of unit cell of four-part grating-waveguide composite structure; (b) physical mechanism of formation of continuous spectral bound states
    Fig. 1. Four-part grating-waveguide composite structure and continuous spectral bound states[59]. (a) Schematic of unit cell of four-part grating-waveguide composite structure; (b) physical mechanism of formation of continuous spectral bound states
    Zero-order reflectance spectra of grating-waveguide composite structure for different δ and corresponding electric field intensity distributions at reflectance peaks[59]
    Fig. 2. Zero-order reflectance spectra of grating-waveguide composite structure for different δ and corresponding electric field intensity distributions at reflectance peaks[59]
    Dependence of Q factor on geometric parameter δ[59]
    Fig. 3. Dependence of Q factor on geometric parameter δ[59]
    Analysis of the Goos-Hänchen shift for different δ[59]. (a) Reflectance angular spectrum, (b) reflection phase angular spectrum, and (c) Goos-Hänchen shift angular spectrum for δ=0.2; (d) reflectance angular spectrum, (e) reflection phase angular spectrum, and (f) Goos-Hänchen shift angular spectrum for δ=0.1
    Fig. 4. Analysis of the Goos-Hänchen shift for different δ[59]. (a) Reflectance angular spectrum, (b) reflection phase angular spectrum, and (c) Goos-Hänchen shift angular spectrum for δ=0.2; (d) reflectance angular spectrum, (e) reflection phase angular spectrum, and (f) Goos-Hänchen shift angular spectrum for δ=0.1
    Dependence of peak value of Goos-Hänchen shift on geometric parameter δ[59]
    Fig. 5. Dependence of peak value of Goos-Hänchen shift on geometric parameter δ[59]
    Diagrams, reflectance spectra, and effective electromagnetic parameter spectra of 1DPCs[60]. Diagrams of (a) (ABA)N and (d) (CDC)M; (b)(e) corresponding reflectance spectra for N=13 and M=13; (c)(f) corresponding effective electromagnetic parameter spectra
    Fig. 6. Diagrams, reflectance spectra, and effective electromagnetic parameter spectra of 1DPCs[60]. Diagrams of (a) (ABA)N and (d) (CDC)M; (b)(e) corresponding reflectance spectra for N=13 and M=13; (c)(f) corresponding effective electromagnetic parameter spectra
    Analysis of the imaginary impendences and the imaginary phases of two 1DPCs in the heterostructure (ABA)N(CDC)M[60]. (a) Schematic of the heterostructure (ABA)N(CDC)M; (b) imaginary impendence angular spectra of two 1DPCs; (c) reflectance angular spectra of the (ABA)N(CDC)M heterostructures; (d) dependence of the reflectance of the interface state on the mismatch degree between the imaginary phases of two 1DPCs
    Fig. 7. Analysis of the imaginary impendences and the imaginary phases of two 1DPCs in the heterostructure (ABA)N(CDC)M[60]. (a) Schematic of the heterostructure (ABA)N(CDC)M; (b) imaginary impendence angular spectra of two 1DPCs; (c) reflectance angular spectra of the (ABA)N(CDC)M heterostructures; (d) dependence of the reflectance of the interface state on the mismatch degree between the imaginary phases of two 1DPCs
    Magnetic field intensity distributions of the heterostructure (ABA)N(CDC)M under different Nand M[60]. (a) N=13, M=13; (b) N=13, M=14; (c) N=13, M=20
    Fig. 8. Magnetic field intensity distributions of the heterostructure (ABA)N(CDC)M under different Nand M[60]. (a) N=13, M=13; (b) N=13, M=14; (c) N=13, M=20
    Analysis of the increase of Goos-Hänchen shift of the heterostructure (ABA)13(CDC)20[60]. (a) Reflectance angular spectrum; (b) reflection phase angular spectrum; (c) Goos-Hänchen shift angular spectrum
    Fig. 9. Analysis of the increase of Goos-Hänchen shift of the heterostructure (ABA)13(CDC)20[60]. (a) Reflectance angular spectrum; (b) reflection phase angular spectrum; (c) Goos-Hänchen shift angular spectrum
    Calculation and simulation of the Goos-Hänchen shift of the heterostructure (ABA)8(CDC)14[60]. (a) Reflectance angular spectra; (b) Goos-Hänchen shift angular spectra; (c) simulated magnetic field intensity distribution
    Fig. 10. Calculation and simulation of the Goos-Hänchen shift of the heterostructure (ABA)8(CDC)14[60]. (a) Reflectance angular spectra; (b) Goos-Hänchen shift angular spectra; (c) simulated magnetic field intensity distribution
    Feng Wu, Jiaju Wu, Zhiwei Guo, Yong Sun, Yunhui Li, Haitao Jiang, Hong Chen. Increase of Goos-Hänchen Shift Based on Exceptional Optical Bound States[J]. Acta Optica Sinica, 2021, 41(8): 0823006
    Download Citation