• Infrared and Laser Engineering
  • Vol. 51, Issue 1, 20210811 (2022)
Junjie Si1、2、3
Author Affiliations
  • 11. China Airborne Missile Academy, Luoyang 471009, China
  • 22. Aviation Key Laboratory of Science and Technology on Infrared Detector, Luoyang 471009, China
  • 33. Henan Antimonide Infrared Detector Engineering Center, Luoyang 471009, China
  • show less
    DOI: 10.3788/IRLA20210811 Cite this Article
    Junjie Si. Novel InSb-based infrared detector materials (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210811 Copy Citation Text show less
    References

    [1] S A Pogodin, S A Dubinsky. Diagram of state of the system In-Sb. Izv Sektora Fiz -Khim Anal, 17, 204-208(1949).

    [2] T S Liu, E A Peretti. The indium-antimony system. Trans ASM, 44, 539-548(1952).

    [3] Gershon G, Albo A, Eylon M, et al. 3 megapixel InSb detect with 10μm pitch [C]Proc of SPIE, 2013, 8704: 870438.

    [4] Klipstein P, Klin O, Grossman S. “XBn” barrier detects f high operating temperatures [C]Proc of SPIE, 2010, 7608: 76081V.

    [5] Kinch M A. Fundamentals of Infrared Detect Materials [M]. Bellingham: SPIE Press, 2007: 57.

    [6] E O Kane. Band structure of indium antimonide. J Phys and Chem Solids, 1, 249-261(1957).

    [7] Hamaguchi C. Basic Semiconduct Physics [M]. 3rd ed. Switzerl: Springer International Publishing, 2017: 30.

    [8] Obukhov S A. MetalInsulat Transition in InSb Induced by Doping, Magic Field, Uniaxial Stress Hydrostatic Pressure [M] Woo H G, Huang T C. Indium: Properties, Technoloical Applications Health Issues. Newyk: Nova Publishers, 2013: 81122.

    [9] Micklethwaite W F H. 5 Bulk Growth of InSb Related Ternary Alloys [M]Capper P. Bulk Crystal Growth of Electronic, Optical & Optoelectronic Materials. Chichester: John Wiley & Sons Ltd., 2005: 150.

    [10] Y P Varshni. Temperature dependence of the energy gap in semiconductors. Physica, 34, 149-154(1967).

    [11] Goldberg Y A. Chapt.9 Indium Antimonide(InSb) [M]Levinshtein M, Rumyantsev S, Shur M. Hbook Series on Semiconduct Parameters: Vol. 1 Si, Ge, C(Diamond), GaAs, GaP, GaSb, InAs, InP, InSb. Singape: Wld Scientific, 1996: 195.

    [12] A Dasa, A Khanb. Carrier concentrations in degenerate semiconductors having band gap narrowing. Z Naturforsch A, 63, 193-198(2008).

    [13] S Law, R Liu, D Wasserman. Doped semiconductors with band-edge plasma frequencies. J Vac Sci & Techn B, 32, 052601(2014).

    [14] Unlu H, Karim M R, Gurel H H, et al. Chapt.1 Advances in LowDimensional Semiconduct Structures[M]Unlu H, Hing N J M. Low Dimensional Semiconduct Structures: acte rization, Modeling Applications. Heidelberg: SpringerVerlag, 2013: 3.

    [15] Adachi S. IIIV Ternary Quaternary Compounds [M]Kasap S, Capper P. Springer Hbook of Electronic Photonic Materials. Würzburg: Springer Science+Business Media, 2006: 744.

    [16] Owens A. Compound Semiconduct Radiation Detects [M]. Boca Raton: CRC Press, 2012: 479.

    [17] A Tanaka, J Shintani, M Kimura, et al. Multi-step pulling of GaInSb bulk crystal from ternary solution. J of Crystal Growth, 209, 625-629(2000).

    [18] R Wang, J Wang, G He, et al. Improvement of GaInSb crystal quality by rotating magnetic field. J Mat Sci: Mat in Electron, 30, 15654-15661(2019).

    [19] K J Bachmann, F A Thiel, Jr H Schreiber, et al. Melt and solution growth of bulk single crystals of quaternary III-V alloys. Prog Crystal Growth Charact, 2, 171-206(1979).

    [20] T Ito. A pseudopotential approach to the structural and thermodynamical properties of III-V ternary semiconductor alloys. Phys Stat Sol(B), 129, 559-568(1985).

    [21] Adachi S. 30 IIIV Ternary Quaternary Compounds [M]Kasap S, Capper P. Springer Hbook of Electronic Photonic Materials. 2nd ed. Switzerl: Springer International Publishing, 2017: 735.

    [22] Wang S, Kudrawiec R, Chi C, et al. 11 Dilute Bise Nitride Alloys f IR Optoelectronic Devices [M]Tournié E, Cerutti L. Infrared Optoelectronics: Materials, Devices, Applications. Duxfd: Woodhead Publishing, 2020: 481.

    [23] O Klin, P C Klipstein, E Jacobsohn, et al. Molecular beam epitaxy grown In1-xAlxSb/InSb structures for infrared detectors. J Vacu Sci & Techn B, 24, 1607-1612(2006).

    [24] Klipstein P, Calahra Z, Zemel A, et al. 3 rd generation infrared detect program at SCD: InAlSb focal plane arrays [C]Proc of SPIE, 2004, 5612: 4250.

    [25] J C Wooley, J Warner. Optical energy-gap variation in InAs-InSb alloys. Canadian Journal of Physics, 42, 1879-1885(1964).

    [26] A Rogalski, K Jóźwikowski. Intrinsic carrier concentration and effective masses in InAs1−xSbx. Infrared Phys, 29, 35-42(1989).

    [27] V W L Chin, R J Egan, T L Tansley. Electron mobility in InAs1−xSbxand the effect of alloy scattering. J Appl Phys, 69, 3571-3577(1991).

    [28] K Murawskia, E Gomółka, M Kopytko, et al. Bandgap energy determination of InAsSb epilayers grown by molecular beam epitaxy on GaAs substrates. Progress in Natural Science:Materials International, 29, 472-476(2019).

    [29] P T Webster, N A Riordan, S Liu, et al. Measurement of InAsSb bandgap energy and InAs/InAsSb band edge positions using spectroscopic ellipsometry and photoluminescence spectroscopy. J Appl Phys, 118, 245076(2015).

    [30] A Rogalski, P Martyniuk, M Kopytko, et al. InAsSb-based infrared photodetectors: Thirty years later on. Sensors, 20, 7047(2020).

    [31] M Y Yen, B F Levine, C G Bethea, et al. Molecular beam epitaxial growth and optical properties of InAs1-xSbxin 8-12 μm wavelength range. Appl Phys Lett, 50, 927-929(1987).

    [32] Y Z Gao, X Y Gong, J J Li, et al. Improved performance of InAs0.07Sb0.93 photoconductors operating at room temperature. Optik, 142, 68-72(2017).

    [33] Wojkowski J S, Mohseni H, Kim J D, et al. Demonstration of InAsSbAlInSb double heterostructure detects f room temperature operation in the 58 μm wavelength range [C]Proc of SPIE, 1999, 3629: 357363.

    [34] Klipstein P, Klin O, Grossman S, et al. MWIR InAsSb XBn detects f high operating temperatures [C]Proc of SPIE, 2010, 7660: 76602 Y.

    [35] Shtrichman I, Aronov D, Ezra M B, et al. High operating temperature epiInSb XBnInAsSb photodetects [C]Proc of SPIE, 2012, 8353: 83532 Y.

    [36] Wróbel J, Ciupa R, Rogalski A. Perfmance limits of roomtemperature InAsSb photodiodes [C]Proc of SPIE, 2010, 7660: 766033.

    [37] D P Samajdar, S Dhar. Valence band structure of InAs1−xBix and InSb1−xBix alloy semiconductors calculated using valence band anticrossing model. The Scientific World Journal, 2014, 704830(2014).

    [38] Anonyme. Novel thallium bismuth based materials provide advantages [EBOL]. (20070103)[20211010]. http:cqd.ece.nthwestern.eduresearchintlasbisb.php.

    [39] J J Lee, J D Kim, M Razeghi. Room temperature operation of 8-12 m InSbBi infrared photodetectors on GaAs substrates. Appl Phys Lett, 73, 602-604(1998).

    [40] J J Lee, J D Kim, M Razeghi. Long-wavelength infrared photodetectors based on InSbBi grown on GaAs substrates. Appl Phys Lett, 71, 2298-2300(1997).

    [41] C E C Wood, A Noreika, M Francombe. Thallimum incorporation in molecular-beam-epitaxial InSb. J Appl Phys, 59, 3610-3612(1986).

    [42] Schilfgaarde M Van, A Sher, A B Chen. InTlSb: An infrared detector material?. Appl Phys Lett, 62, 1857-1859(1993).

    [43] P T Staveteig, Y H Choi, G Labeyrie, et al. Photoconductance measurements on InTlSb/InSb/GaAs grown by low pressure metalorganic chemical vapor deposition. Appl Phys Lett, 64, 460-462(1994).

    [44] Bigan E, Choi Y H, Labeyrie G, et al. InTISb alloys f infrared detection [C]Proc of SPIE, 1994, 2145: 25.

    [45] J D Kim, E Michel, S Park, et al. Room-temperature operation of InTlSb infrared photodetectors on GaAs. Appl Phys Lett, 69, 343-344(1996).

    [46] J J Lee, M Razeghi. Tl incorporation in InSb and lattice contraction of In1-xTlxSb. Appl Phys Lett, 76, 297-299(2000).

    [47] Wang S, Kudrawiec R, Chi C, et al. 11 Dilute Bise Nitride Alloys f IR Optoelectronic Devices [M] Tournié E, Cerutti L. infrared Optoelectronics: Materials, Devices, Applications. Duxfd: Woodhead Publishing, 2020: 478480.

    [48] T Ashley, T M Burke, G J Pryce, et al. InSb1-xNxgrowth and devices. Solid-State Electronics, 47, 387-394(2003).

    [49] Ashley T, Buckle L, Smith G W, et al. Dilute antimonide nitrides f very long wavelength infrared applications [C] Proc of SPIE, 2006, 6206: 62060L.

    [50] N C Patra, S Bharatan, J Li, et al. Annealing studies of heteroepitaxial InSbN on GaAs grown by molecular beam epitaxy for long-wavelength infrared detectors. J Appl Phys, 112, 083107(2012).

    [51] D Rajska, K E Hnida-Gut, M Gajewska, et al. Adjusting the crystal size of InSb nanowires for optical band gap energy modification. Materials Chemistry and Physics, 254, 123498(2020).

    [52] Y Wu, P Yang. Direct observation of vapor-liquid-solid nanowire growth. J Am Chem Soc, 123, 3165-3166(2001).

    [53] Chen H, Sun X, Lai K W C, et al. Infrared detection using an InSb nanowire [C]Proc of IEEE Nanotechnology Materials Devices Conference, 2009: 212216.

    [54] Chen H, Lai K W C, Sun X, et al. Indium Antimonide (InSb) Nanowirebased Photodetects [M]Xi N, Lai K W C. Nano Optoelectronic Senss Devices: Nanophotonics from Design to Manufacturing. Amsterdam: Elsevier, 2012: 209224.

    [55] Razeghi M, Tsao S. Chapter 19 Quantum Dots f Infrared Focal Plane Arrays Grown by MOCVD [M]Esaki L, Klitzing K V, Razeghi M. The Wonder of Nanotechnology: Quantum Optoelectronic Devices Applications. Washington: SPIE Press, 2013: 435490.

    [56] Ting D Z, Soibel A, Hill C J, et al. High operating temperature wave quantum dot barrier infrared detect (QDBIRD) [C]Proc of SPIE, 2012, 8353: 835332.

    [57] W Liu, A Y Chang, R D Schaller, et al. Colloidal InSb nanocrystals. J Am Chem Soc, 134, 20258-20261(2012).

    [58] S Busatto, M D Ruiter, J T B H Jastrzebski, et al. Luminescent colloidal InSb quantum dots from in situ generated single-source precursor. ACS Nano, 14, 13146-13160(2020).

    [59] A Haddadi, X V Suo, S Adhikary, et al. High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1-xSbx/AlAs1-xSbx superlattices. Appl Phys Lett, 107, 141104(2015).

    [60] D Wu, A Dehzangi, J Li, et al. High performance Zn-diffused planar mid-wavelength infrared type-II InAs/InAs1-xSbx superlattice photodetector by MOCVD. Appl Phys Lett, 116, 161108(2020).

    [61] A Haddadi, A Dehzangi, S Adhikary, et al. Background-limited long wavelength infrared InAs/InAs1-xSbx type-II superlattice-based photodetectors operating at 110 K. APL Mater, 5, 035502(2017).

    [62] K Michalczewski, P Martyniuk, L Kubiszyn, et al. Demonstration of the very long wavelength infrared type-II superlattice InAs/InAsSb GaAs immersed photodetector operating at thermoelectric cooling. IEEE Electron Device Letters, 40, 1396-1398(2019).

    [63] M M Ackerman, X Tang, P G-Sionnest. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors. ACS Nano, 12, 7264-7271(2018).

    [64] C Livache, B Martinez, N Goubet, et al. A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat Commun, 10, 2125(2019).

    [65] Anonyme. imec develops infrared thinfilm sens with ''recd'' pixel density [EBOL]. (20191023). https:optics.gnews101038.

    [66] Anonyme. SWIR vision systems wins best of senss 2020 award f its Acuros CQD SWIR Sens [EBOL]. (20201117)[20211220]. https:www.fierceelectronics.comsenssswirvisionsystemswinsbestsenss2020awardfitsacuroscqdswirsens.

    CLP Journals

    [1] Hongyue Hao, Donghai Wu, Yingqiang Xu, Guowei Wang, Dongwei Jiang, Zhichuan Niu. Research progress of high performance Sb-based superlattice mid-wave infrared photodetector (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220106

    Junjie Si. Novel InSb-based infrared detector materials (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210811
    Download Citation