• High Power Laser Science and Engineering
  • Vol. 10, Issue 6, 06000e37 (2022)
Miao Li1, Tong Yao1, Zuhua Yang2、*, Jun Shi3, Feng Wang2, Guohong Yang2, Minxi Wei2, Ao Sun2, and Yang Li1
Author Affiliations
  • 1College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
  • 2Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China
  • 3Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, China
  • show less
    DOI: 10.1017/hpl.2022.25 Cite this Article Set citation alerts
    Miao Li, Tong Yao, Zuhua Yang, Jun Shi, Feng Wang, Guohong Yang, Minxi Wei, Ao Sun, Yang Li. Designing a toroidal crystal for monochromatic X-ray imaging of a laser-produced He-like plasma[J]. High Power Laser Science and Engineering, 2022, 10(6): 06000e37 Copy Citation Text show less

    Abstract

    In this study, a toroidal quartz ( $20\overline{2}3$ ) crystal is designed for monochromatic X-ray imaging at 72.3°. The designed crystal produces excellent images of a laser-produced plasma emitting He-like Ti X-rays at 4.75 keV. Based on the simulations, the imaging resolutions of the spherical and toroidal crystals in the sagittal direction are found to be 15 and 5 μm, respectively. Moreover, the simulation results show that a higher resolution image of the source can be obtained by using a toroidal crystal. An X-ray backlight imaging experiment is conducted using 4.75 keV He-like Ti X-rays, a 3 × 3 metal grid, an imaging plate and a toroidal quartz crystal with a lattice constant of 2d = 0.2749 nm. The meridional and sagittal radii of the toroidal α-quartz crystal are 295.6 and 268.5 mm, respectively. A highly resolved image of the microgrid, with a spatial resolution of 10 μm, is obtained in the experiment. By using similar toroidal crystal designs, the application of a spatially resolved spectrometer with high-resolution X-ray imaging ability is capable of providing imaging data with the same magnification ratio in the sagittal and meridional planes.
    $$ \begin{align} {n}\lambda = 2d\sin \theta, \end{align}$$ ((1))

    View in Article

    $$\begin{align}\frac{1}{p}+\frac{1}{q_{\mathrm{m}}} = \frac{2}{R\sin \theta },\end{align}$$ ((2))

    View in Article

    $$\begin{align}\frac{1}{p}+\frac{1}{q_{\mathrm{s}}} = \frac{2\sin \theta }{R}.\end{align}$$ ((3))

    View in Article

    $$\begin{align}\frac{1}{p}+\frac{1}{q_{\mathrm{m}}} = \frac{2}{R_{\mathrm{m}}\sin \theta },\end{align}$$ ((4))

    View in Article

    $$\begin{align}\frac{1}{p}+\frac{1}{q_{\mathrm{s}}} = \frac{2\sin \theta }{R_{\mathrm{s}}}.\end{align}$$ ((5))

    View in Article

    $$\begin{align}{\sin}^2\theta = {R}_{\textrm{s}}/{R}_{\textrm{m}}.\end{align}$$ ((6))

    View in Article

    $$\begin{align}M = {q}_{\mathrm{s}}/p = {q}_{\mathrm{m}}/p.\end{align}$$ ((7))

    View in Article

    $$\begin{align}\sigma = {L}\left(\frac{M+1}{{M}}\right)\left(1-\sin \theta \right),\end{align}$$ ((8))

    View in Article

    $$\begin{align}{L} = \Delta {s}\frac{p}{R\sin \theta -p},\end{align}$$ ((9))

    View in Article

    $$\begin{align}\mathrm{RMS} = \sqrt{\frac{{\mathrm{z}}_1^2+{z}_2^2+\cdots +{z}_{{N}}^2}{{N}}},\end{align}$$ ((10))

    View in Article

    $$\begin{align}{S}_2\left(\kern1.5pt{f}_{{x}}+{f}_{{y}}\right) = \frac{1}{L^2}\times {\left[\sum \limits_{{m} = 1}^{{N}}\sum \limits_{{n} = 1}^{{N}}{Z}_{{m}{n}}{{e}}^{-{e}\pi {i}\Delta {L}\left({{f}}_{{x}}{m}+{{f}}_{{y}}{n}\right)}{\left(\Delta L\right)}^2\right]}^2,\end{align}$$ ((11))

    View in Article

    Miao Li, Tong Yao, Zuhua Yang, Jun Shi, Feng Wang, Guohong Yang, Minxi Wei, Ao Sun, Yang Li. Designing a toroidal crystal for monochromatic X-ray imaging of a laser-produced He-like plasma[J]. High Power Laser Science and Engineering, 2022, 10(6): 06000e37
    Download Citation