• Laser & Optoelectronics Progress
  • Vol. 59, Issue 18, 1815005 (2022)
Huitong Yang, Liang Lei*, and Yongchun Lin
Author Affiliations
  • School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong , China
  • show less
    DOI: 10.3788/LOP202259.1815005 Cite this Article Set citation alerts
    Huitong Yang, Liang Lei, Yongchun Lin. Binocular Depth Estimation Algorithm Based on Multi-Scale Attention Feature Fusion[J]. Laser & Optoelectronics Progress, 2022, 59(18): 1815005 Copy Citation Text show less
    References

    [1] Kerl C, Sturm J, Cremers D. Robust odometry estimation for RGB-D cameras[C], 3748-3754(2013).

    [2] Shotton J, Girshick R, Fitzgibbon A et al. Efficient human pose estimation from single depth images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 2821-2840(2013).

    [3] Gupta S, Girshick R, Arbeláez P et al. Learning rich features from RGB-D images for object detection and segmentation[M]. Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science, 8695, 345-360(2014).

    [4] Li H Y, Dai B, Shi S S et al. Feature intertwiner for object detection[EB/OL]. https://arxiv.org/abs/1903.11851

    [5] Zhang H, Zhang H, Wang C G et al. Co-occurrent features in semantic segmentation[C], 548-557(2019).

    [6] Scharstein D, Szeliski R, Zabih R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[C], 131-140(2001).

    [7] Mei X, Sun X, Dong W M et al. Segment-tree based cost aggregation for stereo matching[C], 313-320(2013).

    [8] Yang Q X. A non-local cost aggregation method for stereo matching[C], 1402-1409(2012).

    [9] Zhang K, Lu J B, Lafruit G. Cross-based local stereo matching using orthogonal integral images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 19, 1073-1079(2009).

    [10] Zabih R, Woodfill J. Non-parametric local transforms for computing visual correspondence[M]. Eklundh J O. Computer vision-ECCV '94. Lecture notes in computer science, 801, 151-158(1994).

    [11] Žbontar J, LeCun Y. Stereo matching by training a convolutional neural network to compare image patches[EB/OL]. https://arxiv.org/abs/1510.05970

    [12] Shaked A, Wolf L. Improved stereo matching with constant highway networks and reflective confidence learning[C], 6901-6910(2017).

    [13] Güney F, Geiger A. Displets: resolving stereo ambiguities using object knowledge[C], 4165-4175(2015).

    [14] Kendall A, Martirosyan H, Dasgupta S et al. End-to-end learning of geometry and context for deep stereo regression[C], 66-75(2017).

    [15] Chang J R, Chen Y S. Pyramid stereo matching network[C], 5410-5418(2018).

    [16] Cheng M Y, Gai S Y, Da F P. A stereo-matching neural network based on attention mechanism[J]. Acta Optica Sinica, 40, 1415001(2020).

    [17] Wang Y F, Wang H W, Liu Y et al. Real-time stereo matching algorithm with hierarchical refinement[J]. Acta Optica Sinica, 40, 0915002(2020).

    [18] Chen Q B, Ge B Z, Li Y P et al. Stereo matching algorithm based on multi attention mechanism[J]. Laser & Optoelectronics Progress, 59, 1633001(2022).

    [19] Wang Q, Liu X C, Liu W et al. MetaSearch: incremental product search via deep meta-learning[J]. IEEE Transactions on Image Processing, 29, 7549-7564(2020).

    [20] Shi W Z, Caballero J, Huszár F et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C], 1874-1883(2016).

    [21] Fu J, Liu J, Tian H J et al. Dual attention network for scene segmentation[C], 3141-3149(2019).

    [22] Guo X Y, Yang K, Yang W K et al. Group-wise correlation stereo network[C], 3268-3277(2019).

    [23] Mayer N, Ilg E, Häusser P et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C], 4040-4048(2016).

    [24] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C], 3354-3361(2012).

    [25] Menze M, Geiger A. Object scene flow for autonomous vehicles[C], 3061-3070(2015).

    [26] Tulyakov S, Ivanov A, Fleuret F. Practical Deep Stereo (PDS): toward applications-friendly deep stereo matching[EB/OL]. https://arxiv.org/abs/1806.01677

    [27] Pang J H, Sun W X, Ren J S et al. Cascade residual learning: a two-stage convolutional neural network for stereo matching[C], 878-886(2017).

    [28] Song X, Zhao X, Hu H W et al. EdgeStereo: a context integrated residual pyramid network for stereo matching[M]. Jawahar C V, Li H D, Mori G, et al. Computer vision-ACCV 2018. Lecture notes in computer science, 11365, 20-35(2019).

    [29] Badki A, Troccoli A, Kim K et al. Bi3D: stereo depth estimation via binary classifications[C], 1597-1605(2020).

    [30] Xu H F, Zhang J Y. AANet: adaptive aggregation network for efficient stereo matching[C], 1956-1965(2020).

    [31] Yang G R, Zhao H S, Shi J P et al. SegStereo: exploiting semantic information for disparity estimation[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11211, 660-676(2018).

    Huitong Yang, Liang Lei, Yongchun Lin. Binocular Depth Estimation Algorithm Based on Multi-Scale Attention Feature Fusion[J]. Laser & Optoelectronics Progress, 2022, 59(18): 1815005
    Download Citation