• Acta Optica Sinica
  • Vol. 36, Issue 3, 327001 (2016)
Sun Ying1、*, Zhao Shanghong1, and Dong Chen1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201636.0327001 Cite this Article Set citation alerts
    Sun Ying, Zhao Shanghong, Dong Chen. Measurement Device Independent Quantum Key Distribution Network Based on Quantum Memory and Entangled Photon Sources[J]. Acta Optica Sinica, 2016, 36(3): 327001 Copy Citation Text show less
    References

    [1] C H Bennett, G Brassard. Quantum cryptography: public key distribution and coin tossing[C]. Theoretical Computer Science, 2014, 560 (1): 7-11.

    [2] Zhu Feng, Wang Qin. Quantum key distribution protocol based on heralded single photon source[J]. Acta Optica Sinica, 2014, 34(6): 0627002.

    [3] Inamori H, Lütkenhaus N, Mayers D. Unconditional security of practical quantum key distribution[J]. European Physical Journal D, 2007, 41(3): 599-627.

    [4] Davide B, Matteo C, Nicola L, et al.. Experimental quantum key distribution with finite-key security analysis for noisy channels[J]. Nature Communications, 2013, 4(9): 275-289.

    [5] Sun Q C, Wang W L, Liu Y, et al.. Experimental passive decoy-state quantum key distribution[J]. Laser Physics Letters, 2014, 11(8): 085202.

    [6] Hiskett P A, Rosenberg D, Peterson C G, et al.. Long-distance quantum key distribution in optical fibre[J]. New J Phys, 2006, 8(17): 4529-4532.

    [7] Chapuran T E, Toliver P, Peters N A, et al.. Optical networking for quantum key distribution and quantum communications[J]. New J Phys, 2009, 11(11): 105001.

    [8] Fu Y, Yin H L, Chen T Y, et al.. Long-distance measurement-device-independent multiparty quantum communication[J]. Phys Rev Lett, 2015, 114(9): 090501.

    [9] Chen T Y, Wang J, Liang H, et al.. Metropolitan all-pass and inter-city quantum communication network[J]. Opt Express, 2010, 18(26): 27217-27255.

    [10] Townsend P D. Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems [J]. IEEE Photonics Technology Letters, 1998, 7(10): 1048-1050.

    [11] Chip Elliott, Alexander Colvin, Davin Pearson, et al.. Current status of the DARPA quantum network[C]. SPIE, 2005, 5815: 138-149.

    [12] Sasaki M, Fujiwara M, Ishizuka H, et al.. Field test of quantum key distribution in the tokyo QKD network[J]. Opt Express, 2011, 19(11): 10387-10409.

    [13] Stucki D, Legre M, Buntschu F, et al.. Long term performance of the Swiss quantum key distribution network in a field environment[J]. New J Phys, 2011, 13(12): 123001.

    [14] Wang S, Chen W, Yin Z Q, et al.. Field and long-term demonstration of a wide area quantum key distribution network[J]. Quantum Physics, 2014, 2(18): 21739-21756.

    [15] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Phys Rev Lett, 2012, 108(13): 130503.

    [16] Rubenok A, Slater J A, Chan P, et al.. Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks[J]. Phys Rev Lett, 2013, 111(13): 130501.

    [17] Liu Y, Chen T Y, Wang L J, et al.. Experimental measurement-device-independent quantum key distribution[J]. Phys Rev Lett, 2013, 111(13): 130502.

    [18] Liang W Y, Li M, Yin Z Q, et al.. Simple implementation of quantum key distribution based on single-photon Bell-state measurement [J]. Phys Rev A, 2015, 92(1): 012319.

    [19] Panayi C, Razavi M, Ma X, et al.. Memory-assisted measurement-device-independent quantum key distribution[J]. New J Phys, 2014, 16(4): 043005.

    [20] Sun Ying, Zhao Shanghong, Dong Chen. Long distance measurement device independent quantum key distribution based on quantum memories[J]. Acta Physica Sinica, 2015, 64(14): 140304.

    [21] Stute A, Casabone B, Schindler P, et al.. Tunable ion-photon entanglement in an optical cavity[J]. Nature, 2012, 485(7399): 482-485.

    [22] Razavi M, Shapiro J H. Long-distance quantum communication with neutral atoms[J]. Phys Rev A, 2006, 73(4): 042303.

    [23] Muller M, Bounouar S, Jons K D, et al.. On demand generation of indistinguishable polarization-entangled photon pairs[J]. Nature Photonics, 2014, 8(3): 224-228.

    [24] Chen Y H, Lee M J, Wang I C, et al.. Coherent optical memory with high storage efficiency and large fractional delay[J]. Phys Rev Lett, 2013, 110(8): 083601.

    [25] Ma X, Razavi M. Alternative schemes for measurement-device independent quantum key distribution[J]. Phys Rev A, 2012, 86(6): 062319.

    [26] Dousse A, Suffczynski J, Krebs O, et al.. A quantum dot based bright source of entangled photon pairs operating at 53 K[J]. Appl Phys Lett, 2010, 97(8): 081104.

    [27] Bao X H, Reingruber A, Dietrich P, et al.. Efficient and long-lived quantum memory with cold atoms inside a ring cavity[J]. Nat Phys, 2012, 8(7): 517-521.

    [28] Reim K F, Michelberger P, Lee K C, et al.. Single-photon-level quantum memory at room temperature[J]. Phys Rev Lett, 2011, 107(5): 053603.

    [29] Saglamyurek E, Sinclair N, Slater J A, et al.. An integrated processor for photonic quantum states using a broadband light-matter interface [J]. New J Phys, 2014, 16(6): 065019.

    CLP Journals

    [1] Zhu Zhuodan, Zhang Xi, Zhao Shanghong, Su Lihua, Wang Xingyu. Measurement-Device-Independent Quantum Key Distribution Protocols for Heralded Pair Coherent State[J]. Laser & Optoelectronics Progress, 2017, 54(12): 122703

    [2] Liu Xueying, Ren Xuezao, Xu Yuhu. Entanglement Properties of Tavis-Cummings Model Without Rotating Wave Approximation[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102701

    [3] Gao Kun, Nie Min, Yang Guang, Pei Changxing. Performance of Free-Space Quantum Communication in Context of Rainfall[J]. Laser & Optoelectronics Progress, 2017, 54(1): 12701

    Sun Ying, Zhao Shanghong, Dong Chen. Measurement Device Independent Quantum Key Distribution Network Based on Quantum Memory and Entangled Photon Sources[J]. Acta Optica Sinica, 2016, 36(3): 327001
    Download Citation