• Advanced Photonics
  • Vol. 2, Issue 1, 014003 (2020)
Dalong Qi1, Shian Zhang1、2、*, Chengshuai Yang1, Yilin He1, Fengyan Cao1, Jiali Yao1, Pengpeng Ding1, Liang Gao3, Tianqing Jia1, Jinyang Liang4, Zhenrong Sun1、*, and Lihong V. Wang5、*
Author Affiliations
  • 1East China Normal University, School of Physics and Electric Science, State Key Laboratory of Precision Spectroscopy, Shanghai, China
  • 2Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
  • 3University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
  • 4Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, Laboratory of Applied Computational Imaging, Varennes, Québec, Canada
  • 5California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Caltech Optical Imaging Laboratory, Pasadena, California, United States
  • show less
    DOI: 10.1117/1.AP.2.1.014003 Cite this Article Set citation alerts
    Dalong Qi, Shian Zhang, Chengshuai Yang, Yilin He, Fengyan Cao, Jiali Yao, Pengpeng Ding, Liang Gao, Tianqing Jia, Jinyang Liang, Zhenrong Sun, Lihong V. Wang. Single-shot compressed ultrafast photography: a review[J]. Advanced Photonics, 2020, 2(1): 014003 Copy Citation Text show less
    References

    [1] B. Clegg. The Man Who Stopped Time: The Illuminating Story of Eadweard Muybridge--Pioneer Photographer, Father of the Motion Picture, Murderer(2007).

    [2] S. X. Hu, L. A. Collins. Attosecond pump probe: exploring ultrafast electron motion inside an atom. Phys. Rev. Lett., 96, 073004(2006).

    [3] C. P. Hauri et al. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation. Appl. Phys. B, 79, 673-677(2004).

    [4] T. Gaumnitz et al. Streaking of 43-attosecond soft-x-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt. Express, 25, 27506-27518(2017).

    [5] S. A. Hilbert et al. Temporal lenses for attosecond and femtosecond electron pulses. Proc. Natl. Acad. Sci. U. S. A., 106, 10558-10563(2009).

    [6] S. P. Weathersby et al. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory. Rev. Sci. Instrum., 86, 073702(2015).

    [7] Y. Morimoto, P. Baum. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys., 14, 252-256(2018).

    [8] M. T. Hassan. Attomicroscopy: from femtosecond to attosecond electron microscopy. J. Phys. B, 51, 032005(2018).

    [9] D. R. Solli et al. Optical rogue waves. Nature, 450, 1054-1057(2007).

    [10] B. J. Siwick et al. An atomic-level view of melting using femtosecond electron diffraction. Science, 302, 1382-1385(2003).

    [11] J. Yang et al. Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction. Science, 361, 64-67(2018).

    [12] R. S. Craxton et al. Direct-drive inertial confinement fusion: a review. Phys. Plasmas, 22, 110501(2015).

    [13] J. Y. Liang et al. Single-shot ultrafast optical imaging. Optica, 5, 1113-1127(2018).

    [14] V. Tiwari, M. Sutton, S. McNeill. Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation. Exp. Mech., 47, 561-579(2007).

    [15] X. Wang et al. High-frame-rate observation of single femtosecond laser pulse propagation in fused silica using an echelon and optical polarigraphy technique. Appl. Opt., 53, 8395-8399(2014).

    [16] K. Nakagawa et al. Sequentially timed all-optical mapping photography (STAMP). Nat. Photonics, 8, 695-700(2014).

    [17] T. Kakue et al. Digital light-in-flight recording by holography by use of a femtosecond pulsed laser. IEEE J. Sel. Top. Quantum Electron., 18, 479-485(2012).

    [18] N. H. Matlis, A. Axley, W. P. Leemans. Single-shot ultrafast tomographic imaging by spectral multiplexing. Nat. Commun., 3, 1111(2012).

    [19] L. Gao et al. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature, 516, 74-77(2014).

    [20] F. Mochizuki et al. Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor. Opt. Express, 24, 4155-4176(2016).

    [21] D. Dudley, W. M. Duncan, J. Slaughter. Emerging digital micromirror device (DMD) applications. Proc. SPIE, 4985, 14-25(2003).

    [22] R. M. Willett, R. F. Marcia, J. M. Nichols. Compressed sensing for practical optical imaging systems: a tutorial. Opt. Eng., 50, 072601(2011).

    [23] E. J. Candès, J. K. Romberg, T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory, 52, 489-509(2006).

    [24] E. J. Candès, J. K. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math., 59, 1207-1223(2006).

    [25] E. J. Candes, T. Tao. Near-optimal signal recovery from random projections: universal encoding strategies?. IEEE Trans. Inf. Theory, 52, 5406-5425(2006).

    [26] J. A. Tropp, S. J. Wright. Computational methods for sparse solution of linear inverse problems. Proc. IEEE, 98, 948-958(2010).

    [27] C. S. Yang et al. Optimizing codes for compressed ultrafast photography by the genetic algorithm. Optica, 5, 147-151(2018).

    [28] J. M. Bioucas-Dias, M. A. Figueiredo. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process., 16, 2992-3004(2007).

    [29] C. Yang et al. Compressed ultrafast photography by multi-encoding imaging. Laser Phys. Lett., 15, 116202(2018).

    [30] M. Elad. Optimized projections for compressed sensing. IEEE Trans. Signal Process., 55, 5695-5702(2007).

    [31] J. M. Duarte-Carvajalino et al. Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Trans. Image Process., 18, 1395-1408(2009).

    [32] V. Abolghasemi et al. On optimization of the measurement matrix for compressive sensing, 427-431(2010).

    [33] J. Liang et al. Single-shot real-time video recording of a photonic Mach cone induced by a scattered light pulse. Sci. Adv., 3, e1601814(2017).

    [34] J. Liang, L. Zhu, L. V. Wang. Single-shot real-time femtosecond imaging of temporal focusing. Light Sci. Appl., 7, 42(2018).

    [35] J. Y. Liang et al. Encrypted three-dimensional dynamic imaging using snapshot time-of-fight compressed ultrafast photography. Sci. Rep., 5, 15504(2015).

    [36] C. S. Yang et al. Improving the image reconstruction quality of compressed ultrafast photography via an augmented Lagrangian algorithm. J. Opt., 21, 035703(2019).

    [37] L. Zhu et al. Space- and intensity-constrained reconstruction for compressed ultrafast photography. Optica, 3, 694-697(2016).

    [38] A. Chambolle. An algorithm for total variation minimization and applications. J. Math. Imaging Vis., 20, 89-97(2004).

    [39] M. V. Afonso, J. M. Bioucas-Dias, M. A. Figueiredo. An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Process., 20, 681-695(2011).

    [40] J. Nocedal, S. J. Wright. Numerical Optimization, 511-513(2006).

    [41] M. A. T. Figueiredo, R. D. Nowak, S. J. Wright. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process., 1, 586-597(2008).

    [42] J. Hunt et al. Metamaterial apertures for computational imaging. Science, 339, 310-313(2013).

    [43] Y. Lu et al. Compressed ultrafast spectral–temporal photography. Phys. Rev. Lett., 122, 193904(2019).

    [44] D. L. Qi et al. Compressed ultrafast electron diffraction imaging through electronic encoding. Phys. Rev. Appl., 10, 054061(2018).

    [45] X. L. Liu et al. Single-shot real-time sub-nanosecond electron imaging aided by compressed sensing: analytical modeling and simulation. Micron, 117, 47-54(2019).

    [46] X. L. Liu et al. Single-shot compressed optical-streaking ultra-high-speed photography. Opt. Lett., 44, 1387-1390(2019).

    [47] T. Chen et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499, 295-300(2013).

    [48] H. Mikami, L. Gao, K. Goda. Ultrafast optical imaging technology: principles and applications of emerging methods. Nanophotonics, 5, 497-509(2016).

    [49] D. Jaque, F. Vetrone. Luminescence nanothermometry. Nanoscale, 4, 4301-4326(2012).

    [50] S. T. Flock et al. Monte Carlo modeling of light propagation in highly scattering tissues—I. Model predictions and comparison with diffusion theory. IEEE Trans. Biomed. Eng., 36, 1162-1168(1989).

    [51] C. Zhu, Q. Liu. Review of Monte Carlo modeling of light transport in tissues. J. Biomed. Opt., 18, 050902(2013).

    [52] L. V. Wang, H. I. Wu. Biomedical Optics: Principles and Imaging(2009).

    [53] R. M. Koehl, S. Adachi, K. A. Nelson. Direct visualization of collective wavepacket dynamics. J. Phys. Chem. A, 103, 10260-10267(1999).

    [54] Z. Wang, F. Su, F. A. Hegmann. Ultrafast imaging of terahertz Cherenkov waves and transition-like radiation in LiNbO3. Opt. Express, 23, 8073-8086(2015). https://doi.org/10.1364/OE.23.008073

    [55] D. Huang et al. Optical coherence tomography. Science, 254, 1178-1181(1991).

    [56] A. N. Obeid et al. A critical review of laser Doppler flowmetry. J. Med. Eng. Technol., 14, 178-181(1990).

    [57] T. Durduran et al. Diffuse optics for tissue monitoring and tomography. Rep. Prog. Phys., 73, 076701(2010).

    [58] K. Omasa, F. Hosoi, A. Konishi. 3D lidar imaging for detecting and understanding plant responses and canopy structure. J. Exp. Bot., 58, 881-898(2007).

    [59] S. L. Liu et al. Fast and high-accuracy localization for three-dimensional single-particle tracking. Sci. Rep., 3, 2462(2013).

    [60] B. Javidi, F. Okano, J. Y. Son. Three-Dimensional Imaging, Visualization, and Display(2009).

    [61] A. Koschan et al. 3D Imaging for Safety and Security(2007).

    [62] T. Bell, S. Zhang. Toward superfast three-dimensional optical metrology with digital micromirror device platforms. Opt. Eng., 53, 112206(2014).

    [63] J. Kittler et al. 3D assisted face recognition: a survey of 3D imaging, modelling and recognition approaches. Proc. IEEE Comput. Soc. Conf. CVPR, 114-120(2005).

    [64] P. Dickson et al. Mosaic generation for under vehicle inspection. Proc. Sixth IEEE Workshop Appl. Comput. Vision, 251-256(2002).

    [65] S. R. Sukumar et al. Robotic three-dimensional imaging system for under-vehicle inspection. J. Electron. Imaging, 15, 033008(2006).

    [66] Deliver mission critical insights.

    [67] C. W. Trussell. 3D imaging for army applications. Proc. SPIE, 4377, 126-131(2001).

    [68] J. Geng. Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photonics, 3, 128-160(2011).

    [69] P. S. Huang, S. Zhang. Fast three-step phase-shifting algorithm. Appl. Opt., 45, 5086-5091(2006).

    [70] B. Javidi, G. Zhang, J. Li. Encrypted optical memory using double-random phase encoding. Appl. Opt., 36, 1054-1058(1997).

    [71] A. Velten et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat. Commun., 3, 745(2012).

    [72] G. Satat et al. Locating and classifying fluorescent tags behind turbid layers using time-resolved inversion. Nat. Commun., 6, 6796(2015).

    [73] X. Xiao et al. Advances in three-dimensional integral imaging: sensing, display, and applications [Invited]. Appl. Opt., 52, 546-560(2013).

    [74] B. Sun et al. 3D computational imaging with single-pixel detectors. Science, 340, 844-847(2013).

    [75] Y. Y. Chen et al. A 3-D surveillance system using multiple integrated cameras. IEEE Int. Conf. Inf. and Autom. (ICIA), 1930-1935(2010).

    [76] J. Sell, P. O’Connor. The Xbox One system on a chip and kinect sensor. IEEE Micro, 34, 44-53(2014).

    [77] G. Gariepy et al. Detection and tracking of moving objects hidden from view. Nat. Photonics, 10, 23-26(2015).

    [78] X. Liu et al. Non-line-of-sight imaging using phasor-field virtual wave optics. Nature, 572, 620-623(2019).

    [79] A. McCarthy et al. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection. Opt. Express, 21, 8904-8915(2013).

    [80] A. Medina, F. Gayá, F. del Pozo. Compact laser radar and three-dimensional camera. J. Opt. Soc. Am. A, 23, 800-805(2006).

    [81] S. Gokturk, H. Yalcin, C. Bamji. A time-of-flight depth sensor: system description, issues and solutions, 35-44(2004).

    [82] G. J. Iddan, G. Yahav. Three-dimensional imaging in the studio and elsewhere. Proc. SPIE, 4298, 48-55(2001).

    [83] Products overview.

    [84] R. Stettner, H. Bailey, R. D. Richmond. Eye-safe laser radar 3D imaging. Proc. SPIE, 4377, 46-56(2001).

    [85] C. Iaconis, I. A. Walmsley. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt. Lett., 23, 792-794(1998).

    [86] D. J. Kane, R. Trebino. Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulses by using frequency-resolved optical gating. Opt. Lett., 18, 823-825(1993).

    [87] F. Y. Cao et al. Single-shot spatiotemporal intensity measurement of picosecond laser pulses with compressed ultrafast photography. Opt. Lasers Eng., 116, 89-93(2019).

    [88] G. H. Zhu et al. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express, 13, 2153-2159(2005).

    [89] D. Oron, E. Tal, Y. Silberberg. Scanningless depth-resolved microscopy. Opt. Express, 13, 1468-1476(2005).

    [90] Z. Bor et al. Femtosecond pulse front tilt caused by angular dispersion. Opt. Eng., 32, 2501-2504(1993).

    [91] J. Hebling. Derivation of the pulse front tilt caused by angular dispersion. Opt. Quantum Electron., 28, 1759-1763(1996).

    [92] T. Kubota et al. Moving picture recording and observation of three-dimensional image of femtosecond light pulse propagation. Opt. Express, 15, 14348-14354(2007).

    [93] Z. Y. Li et al. Single-shot tomographic movies of evolving light-velocity objects. Nat. Commun., 5, 3085(2014).

    [94] K. Goda, K. K. Tsia, B. Jalali. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 458, 1145-1149(2009).

    [95] T. Suzukiet et al. Single-shot 25-frame burst imaging of ultrafast phase transition of Ge2Sb2Te5. Appl. Phys. Express, 10, 092502(2017). https://doi.org/10.7567/APEX.10.092502

    [96] A. Ehn et al. FRAME: femtosecond videography for atomic and molecular dynamics. Light Sci. Appl., 6, e17045(2017).

    [97] P. Gabolde, R. Trebino. Single-frame measurement of the complete spatiotemporal intensity and phase of ultrashort laser pulses using wavelength-multiplexed digital holography. J. Opt. Soc. Am. B, 25, A25-A33(2008).

    [98] G. L. Long, X. S. Liu. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A, 65, 032302(2002).

    [99] N. Gisin et al. Quantum cryptography. Rev. Mod. Phys., 74, 145-195(2002).

    [100] T. Honjo et al. Long-distance entanglement-based quantum key distribution over optical fiber. Opt. Express, 16, 19118-19126(2008).

    [101] L. Gyongyosi. Improved long-distance two-way continuous variable quantum key distribution over optical fiber, FW2C.5(2013).

    [102] D. J. Bernstein, D. J. Bernstein, J. Buchmann, E. Dahmen. Introduction to post-quantum cryptography. Post-Quantum Cryptography, 1-14(2009).

    [103] S. Ranganathan et al. A three-party authentication for key distributed protocol using classical and quantum cryptography. Int. J. Comput. Sci. Issues, 7, 148-153(2010).

    [104] W. Liu et al. Hybrid quantum private communication with continuous-variable and discrete-variable signals. Sci. China Phys. Mech. Astron., 58, 1-7(2015).

    [105] L. Gyongyosi, S. Imre. Adaptive multicarrier quadrature division modulation for long-distance continuous-variable quantum key distribution. Proc. SPIE, 9123, 912307(2014).

    [106] L. C. Comandar et al. Room temperature single-photon detectors for high bit rate quantum key distribution. Appl. Phys. Lett., 104, 021101(2014).

    [107] C. S. Yang et al. Compressed 3D image information and communication security. Adv. Quantum Technol., 1, 1800034(2018).

    [108] C. Dong et al. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intel., 38, 295-307(2015).

    [109] H. Wang et al. Deep learning achieves super-resolution in fluorescence microscopy. Nat. Methods, 16, 103-110(2019).

    [110] A. Sinha et al. Lensless computational imaging through deep learning. Optica, 4, 1117-1125(2017).

    [111] M. Lyu et al. Learning-based lensless imaging through optically thick scattering media. Adv. Photonics, 1, 036002(2019).

    [112] M. Lyu et al. Deep-learning-based ghost imaging. Sci. Rep., 7, 17865(2017).

    CLP Journals

    [1] Pengpeng Ding, Yunhua Yao, Dalong Qi, Chengshuai Yang, Fengyan Cao, Yilin He, Jiali Yao, Chengzhi Jin, Zhengqi Huang, Li Deng, Lianzhong Deng, Tianqing Jia, Jinyang Liang, Zhenrong Sun, Shian Zhang. Single-shot spectral-volumetric compressed ultrafast photography[J]. Advanced Photonics, 2021, 3(4): 045001

    [2] Xiao-Cong (Larry) Yuan, Anatoly Zayats. Laser: sixty years of advancement[J]. Advanced Photonics, 2020, 2(5): 050101

    [3] Chengshuai Yang, Yunhua Yao, Chengzhi Jin, Dalong Qi, Fengyan Cao, Yilin He, Jiali Yao, Pengpeng Ding, Liang Gao, Tianqing Jia, Jinyang Liang, Zhenrong Sun, Shian Zhang. High-fidelity image reconstruction for compressed ultrafast photography via an augmented-Lagrangian and deep-learning hybrid algorithm[J]. Photonics Research, 2021, 9(2): B30

    [4] Xianglei Liu, João Monteiro, Isabela Albuquerque, Yingming Lai, Cheng Jiang, Shian Zhang, Tiago H. Falk, Jinyang Liang. Single-shot real-time compressed ultrahigh-speed imaging enabled by a snapshot-to-video autoencoder[J]. Photonics Research, 2021, 9(12): 2464

    [5] Kangning Zhang, Junjie Hu, Weijian Yang. Deep compressed imaging via optimized pattern scanning[J]. Photonics Research, 2021, 9(3): B57

    Dalong Qi, Shian Zhang, Chengshuai Yang, Yilin He, Fengyan Cao, Jiali Yao, Pengpeng Ding, Liang Gao, Tianqing Jia, Jinyang Liang, Zhenrong Sun, Lihong V. Wang. Single-shot compressed ultrafast photography: a review[J]. Advanced Photonics, 2020, 2(1): 014003
    Download Citation