• Laser & Optoelectronics Progress
  • Vol. 55, Issue 12, 120901 (2018)
Keding Yan1, Liang Xue2、*, Huachuan Huang3, and Shouyu Wang4
Author Affiliations
  • 1 School of Electronic Information Engineering, Xi'an Technological University, Xi'an, Shaanxi 710032, China
  • 2 College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China
  • 3 Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
  • 4 Department of Optoelectric Information Science and Technology, School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
  • show less
    DOI: 10.3788/LOP55.120901 Cite this Article Set citation alerts
    Keding Yan, Liang Xue, Huachuan Huang, Shouyu Wang. Research and Design of Quantitative Interferometric Microscopic Cytometer[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120901 Copy Citation Text show less
    References

    [1] Yang P, Wei D, Pang K et al. Progress in detection of circulating tumor cell by in vivo photoacoustic flow cytometry[J]. Laser & Optoelectronics Progress, 54, 090001(2017).

    [2] Bu M, Hu S S, Tao Z H et al. Scattering characteristics of leukocytes on polarized light and relationship between scattering characteristics and cell structure[J]. Chinese Journal of Lasers, 44, 1007001(2017).

    [3] Li C, Guo B H, Sun Z. Optical system design of multispectral achromatic imaging flow cytometer[J]. Acta Optica Sinica, 36, 0922002(2016).

    [4] Stephens D J, Allan V J. Light microscopy techniques for live cell imaging[J]. Science, 300, 82-86(2003). http://mutage.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=300/5616/82

    [5] Greenbaum A, Luo W, Su T W et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy[J]. Nature Methods, 9, 889-895(2012). http://www.nature.com/nmeth/journal/v9/n9/abs/nmeth.2114.html

    [6] Ramachandraiah H, Amasia M, Cole J et al. Lab-on-DVD: standard DVD drives as a novel laser scanning microscope for image based point of care diagnostics[J]. Lab on a Chip, 13, 1578-1585(2013). http://www.ncbi.nlm.nih.gov/pubmed/23440071

    [7] Mir M, Wang Z, Tangella K et al. Diffraction phase cytometry: blood on a CD-ROM[J]. Optics Express, 17, 2579-2585(2009). http://www.ncbi.nlm.nih.gov/pubmed/19219161

    [8] di Caprio G, ei Mallahi A, Ferraro P et al. . 4D tracking of clinical seminal samples for quantitative characterization of motility parameters[J]. Biomedical Optics Express, 5, 690-700(2014). http://europepmc.org/abstract/med/24688806

    [9] Merola F, Miccio L, Paturzo M et al. Driving and analysis of micro-objects by digital holographic microscope in microfluidics[J]. Optics Letters, 36, 3079-3081(2011). http://www.ncbi.nlm.nih.gov/pubmed/21847166

    [10] Rappaz B, Barbul A, Emery Y et al. Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer[J]. Cytometry Part A, 73, 895-903(2008). http://europepmc.org/abstract/MED/18615599

    [11] Moon I, Javidi B, Yi F L et al. Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells[J]. Optics Express, 20, 10295-10309(2012). http://www.opticsinfobase.org/abstract.cfm?uri=oe-20-9-10295

    [12] Psaltis D, Quake S R, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics[J]. Nature, 442, 381-386(2006). http://www.tandfonline.com/servlet/linkout?suffix=CIT0012&dbid=8&doi=10.1080%2F01694243.2018.1461447&key=16871205

    [13] Cui X Q, Lee L M, Heng X et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging[J]. Proceedings of the National Academy of Sciences, 105, 10670-10675(2008).

    [14] Zheng G, Lee S A, Antebi Y et al. The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM)[J]. Proceedings of the National Academy of Sciences, 108, 16889-16894(2011). http://www.ncbi.nlm.nih.gov/pubmed/21969539

    [15] Schonbrun E, Ye W N, Crozier K B. Scanning microscopy using a short-focal-length Fresnel zone plate[J]. Optics Letters, 34, 2228-2230(2009). http://www.ncbi.nlm.nih.gov/pubmed/19823557

    [16] Schonbrun E, Steinvurzel P E, Crozier K B. A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array[J]. Optics Express, 19, 1385-1394(2011). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-2-1385

    [17] Gorthi S S, Schaak D, Schonbrun E. Fluorescence imaging of flowing cells using a temporally coded excitation[J]. Optics Express, 21, 5164-5170(2013). http://www.ncbi.nlm.nih.gov/pubmed/23482050

    [18] Schonbrun E, di Caprio G, Schaak D. Dye exclusion microfluidic microscopy[J]. Optics Express, 21, 8793-8798(2013).

    [19] Wang S Y, Xue L, Li H L et al. Quantitative phase detection with expanded principal component analysis method on interferometric microscopic cytometer[J]. Applied Physics B, 116, 235-239(2014). http://link.springer.com/article/10.1007/s00340-013-5680-2

    [20] Xue L, Vargas J, Wang S Y et al. Quantitative interferometric microscopy cytometer based on regularized optical flow algorithm[J]. Optics Communications, 350, 222-229(2015). http://www.sciencedirect.com/science/article/pii/S0030401815003065

    [21] Xue L, Wang S Y, Yan K D et al. Gravity driven high throughput phase detecting cytometer based on quantitative interferometric microscopy[J]. Optics Communications, 316, 5-9(2014). http://www.sciencedirect.com/science/article/pii/S0030401813011176

    [22] Girshovitz P, Shaked N T. Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization[J]. Biomedical Optics Express, 3, 1757-1773(2012). http://europepmc.org/articles/PMC3409697/

    [23] Tsinopoulos S V, Polyzos D. Scattering of He-Ne laser light by an average-sized red blood cell[J]. Applied Optics, 38, 5499-5510(1999). http://www.ncbi.nlm.nih.gov/pubmed/18324059

    [24] Vargas J, Quiroga J A, Belenguer T. Phase-shifting interferometry based on principal component analysis[J]. Optics Letters, 36, 1326-1328(2011). http://europepmc.org/abstract/med/21499345

    [25] Vargas J, Quiroga J A, Belenguer T. Analysis of the principal component algorithm in phase-shifting interferometry[J]. Optics Letters, 36, 2215-2217(2011). http://www.ncbi.nlm.nih.gov/pubmed/21685971

    [26] Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America, 72, 156-160(1982). http://www.opticsinfobase.org/abstract.cfm?uri=josa-72-1-156

    [27] Ikeda T, Popescu G, Dasari R R et al. Hilbert phase microscopy for investigating fast dynamics in transparent systems[J]. Optics Letters, 30, 1165-1167(2005). http://europepmc.org/abstract/med/15945142

    [28] Wang S Y, Xue L, Lai J C et al. An improved phase retrieval method based on Hilbert transform in interferometric microscopy[J]. Optik - International Journal for Light and Electron Optics, 124, 1897-1901(2013). http://www.sciencedirect.com/science/article/pii/S0030402612003907

    [29] Wang S Y, Sun N, Xue L et al. Radial Hilbert transform phase retrieval algorithm for circular carrier interferogram[J]. Optics Communications, 304, 148-152(2013). http://www.sciencedirect.com/science/article/pii/S0030401813004082

    [30] Xue L, Lai J C, Wang S Y et al. Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells[J]. Biomedical Optics Express, 2, 987-995(2011). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072137/

    [31] Vargas J, Quiroga J A. Sorzano C O S, et al. Two-step interferometry by a regularized optical flow algorithm[J]. Optics Letters, 36, 3485-3487(2011). http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-17-3485

    Keding Yan, Liang Xue, Huachuan Huang, Shouyu Wang. Research and Design of Quantitative Interferometric Microscopic Cytometer[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120901
    Download Citation