• Infrared and Laser Engineering
  • Vol. 47, Issue 5, 520002 (2018)
Xia Zuxue1、2、*, Liu Falin1, Deng Hu2, Chen Junxue3, and Liu Quancheng2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/irla201847.0520002 Cite this Article
    Xia Zuxue, Liu Falin, Deng Hu, Chen Junxue, Liu Quancheng. Frequency adjustable THz microstructured photoconductive antennas[J]. Infrared and Laser Engineering, 2018, 47(5): 520002 Copy Citation Text show less
    References

    [1] Lee Y S. Principles of Terahertz Science and Technology[M]. US: Springer, 2009.

    [2] Zhang Xutao, Sun Jinhai, Cai He, et al. Quiet zone measurements and data processing of THz_TDS experiment system[J]. Infrared & Laser Engineering, 2016, 45(11): 1125003. (in Chinese)

    [3] Zuo Jian, Zhang Liangliang, Gong Chen, et al. Terahertz system on chip and research progress of terahertz ultra wide spectrum source based on micro nano structure[J]. Acta Physica Sinica, 2016, 65(1): 010704. (in Chinese)

    [4] Xia Zuxue, Liu Falin, Chen Junxue, et al. Impact of dipole photoconductive antenna structure on the THz radiation characteristics [J]. Infrared & Laser Engineering, 2015, 44(8): 2429-2434. (in Chinese)

    [5] Khiabani N, Huang Y, Shen Y. Discussions on the main parameters of THz photoconductive antennas as emitters[C]//Antennas and Propagation (EUCAP), Proceedings of the 5th European Conference on IEEE, 2011: 462-466.

    [6] Li Chenyu, Yang Zhou, Zhou Qingli, et al. Influence of structures on optical modulation in terahertz metamaterials[J].Infrared & Laser Engineering, 2016, 45(7): 0703002. (in Chinese)

    [7] Chen Xieyu, Tian Zhen. Recent progress in terahertz dynamic modulation based on graphen[J]. Chinese Optics, 2017, 10(1): 86-97. (in Chinese)

    [8] Zhang Lei, Liu Shuo, Cui Tiejun. Theory and application of coding metamaterials[J]. Chinese Optics, 2017, 10(1): 1-12. (in Chinese)

    [9] O′Hara J F, Chen H T, Taylor A J, et al. Split-ring resonator enhanced terahertz antenna[C]//Nonlinear Optics: Materials, Fundamentals and Applications, Optical Society of America, 2007: TuB2.

    [10] Takano K, Chiyoda Y, Nishida T, et al. Optical switching of terahertz radiation from meta-atom-loaded photoconductive antennas[J]. Applied Physics Letters, 2011, 99(16): 161114.

    [11] Liu Minzhe, Wang Taisheng, Li Hefu, et al. Electrostatic field assisted micro imprint lithography technology[J]. Optics & Precision Engineering, 2017, 25(3): 663-671. (in Chinese)

    [12] Nguyen T K, Kim W T, Kang B J, et al. Photoconductive dipole antennas for efficient terahertz receiver[J]. Optics Communications, 2017, 383: 50-56.

    [13] Chen H T, Padilla W J, Zide J M O, et al. Active terahertz metamaterial Devices[J]. Nature, 2007, 444(6): 597-600.

    [14] Hughes S, Tani M, Sakai K. Vector analysis of terahertz transients generated by photoconductive antennas in near- and far-field regimes [J]. Applied Physics, 2003, 93(8):4880-4884.

    [15] Zhu N, Ziolkowski R W. Photoconductive THz antenna designs with high radiation efficiency, high directivity, and high aperture efficiency[J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3(6): 721-730.

    [16] Miyamaru F, Saito Y, Yamamoto K, et al. Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas [J]. Applied Physics Letters, 2010, 96(21): 211104.

    Xia Zuxue, Liu Falin, Deng Hu, Chen Junxue, Liu Quancheng. Frequency adjustable THz microstructured photoconductive antennas[J]. Infrared and Laser Engineering, 2018, 47(5): 520002
    Download Citation