• Laser & Optoelectronics Progress
  • Vol. 55, Issue 8, 81404 (2018)
Su Juan1、2, Jiao Mingxing1, Jiang Fei1, and Xing Junhong1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop55.081404 Cite this Article Set citation alerts
    Su Juan, Jiao Mingxing, Jiang Fei, Xing Junhong. Research on Laser Frequency Stabilization Techniques Using Orthogonally Demodulated Pound-Drever-Hall Method[J]. Laser & Optoelectronics Progress, 2018, 55(8): 81404 Copy Citation Text show less
    References

    [1] Shen H, Li L F, Chen L S. Lasers with ultra-narrow linewidth-theories and applications of laser frequency stabilization[J]. Physics, 2016, 45(7): 441-448.

    [2] Clivati C, Mura A, Calonico D, et al. Planar-waveguide external cavity laser stabilization for an optical link with 10-19 frequency stability[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2011, 58(12): 2582-2587.

    [3] Chen Q F, Nevsky A, Schiller S. Locking the frequency of lasers to an optical cavity at the 1.6×10-17 relative instability level[J]. Applied Physics B, 2012, 107(3): 679-683.

    [4] Chen H Q, Jiang Y Y, Bi Z Y, et al. Progress and trend of narrow-linewidth lasers[J]. Science China Technological Sciences, 2013, 56(7): 1589-1596.

    [5] Wu B, Yao H, Hua G, et al. 1 Hz linewidth Ti∶sapphire laser as local oscillator for 40Ca+ optical clocks[J]. Review of Scientific Instrument, 2016, 87(6): 063121.

    [6] Drever R W P, Hall J L, Kowalski F V, et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B: Photophysics and Laser Chemistry, 1983, 31(2): 97-105.

    [7] Zheng G J, Dai D P, Fang Y F, et al. Locking of optical transfer cavity based on PDH technique[J]. Laser & Optoelectronics Progress, 2014, 51(12): 121401.

    [8] Cygan A, Lisak D, Maslowski P, et al. Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer[J]. Review of Scientific Instrument, 2011, 82(6): 063107.

    [9] Notcutt M, Ma L, Ye J, et al. Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity[J]. Optics Letters, 2005, 30(14): 1815-1817.

    [10] Kessler T, Hagemann C, Grebing C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 2012, 6(10): 687-692.

    [11] Webster S A, Oxborrow M, Gill P. Vibration insensitive optical cavity[J]. Physical Review A, 2007, 75(1): 10064-10070.

    [12] Davila-Rodriguez J, Baynes F N, Ludlow A D, et al. Compact, thermal-noise-limited reference cavity for ultra-low-noise microwave generation[J]. Optics Letters, 2017, 42(7): 1277-1280.

    [13] Andreou S, Williams K A, Bente E A J M. Residual amplitude modulation in InP-based integrated phase modulators and its effect in Pound-Drever-Hall frequency stabilization[C]∥Integrated Photonics Research, Silicon and Nanophotonics 2017, July, 24-27 2017, New Orleans, Louisiana United States. Washington: Optical Society of America, 2017: IM3A.7.

    [14] Fan X L, Jin S Z, Zhang S, et al. Active suppression of residual amplitude modulation in laser frequencystabilization by multi-frequency mixing[J]. Chinese Journal of Lasers, 2016, 43(4): 0402001

    [15] Li Z X, Ma W G, Yang W H, et al. Reduction of zero baseline drift of the Pound-Drever-Hall error signal with a wedged electro-optical crystal for squeezed state generation[J]. Optics Letters, 2016, 41(14): 3331-3333.

    [16] Gallego J, Ghosh S, Alavi S K, et al. High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis[J]. Applied Physics B, 2016, 122(3): 47.

    [17] Wang M Y, Jin X Y, Wang J, et al. Analysis of the Pund-Drever-Hall frequency stabilization technique based on a whispering gallery mode optical microsphere cavity[J]. Acta Photonica Sinica, 2017, 46(7): 0706003.

    [18] Spencer D T, Davenport M L, Komljenovic T, et al. Stabilization of heterogeneous silicon lasers using Pound-Drever-Hall locking to Si3N4 ring resonators[J]. Optics Express, 2016, 24(12): 13511-13517.

    [19] Lam T Y, Slagmolen B J, Chow J H, et al. Digital laser frequency stabilization using an optical cavity[J]. IEEE Journal of Quantum Electronics, 2010, 46(8): 1178-1183.

    [20] Geng W B, Hu S L, Shao H F. Design of laser frequency stabilization systems based on FPGA and Pound-Drever-Hall technique[J]. Laser Technology, 2014: 38(5): 665-668.

    [21] Bian Z L, Huang C D, Gao M, et al. Research on control technique for Pound-Drever-Hall laser frequency stabilizing system[J]. Chinese Journal of Lasers, 2012, 39(3): 0302001.

    [22] Gatti D, Gotti R, Sala T, et al. Wide-bandwidth Pound-Drever-Hall locking through a single-sideband modulator[J]. Optics Letters, 2015, 40(22): 5176-5179.

    [23] Su J, Jiao M X, Ma Y Y, et al. Design of Pound-Drever-Hall laser frequency stabilization system using the quadrature demodulation[J]. Chinese Journal of Lasers, 2016, 43(3): 0316001.

    [24] Guo Y C, Ruan H L. Random signal processing[M]. Hefei: Hefei University of Technology Press, 2009.

    [25] Oppenheim A V, Schafer R W. Discrete-time signal processing[M]. New Jersey: Prentice Hall, 1999.

    [26] Li S Z, Wan J W. Discrete-time signal processing[M].Changsha: National University of Defense Technology Press,1994.

    [27] Black E D.An introduction to Pound-Drever-Hall laser frequency stabilization[J]. American Journal of Physics, 2001, 69(1): 79-87.

    Su Juan, Jiao Mingxing, Jiang Fei, Xing Junhong. Research on Laser Frequency Stabilization Techniques Using Orthogonally Demodulated Pound-Drever-Hall Method[J]. Laser & Optoelectronics Progress, 2018, 55(8): 81404
    Download Citation