• Chinese Optics Letters
  • Vol. 19, Issue 8, 081406 (2021)
Karol Krzempek1、*, Dorota Tomaszewska1, Aleksandra Foltynowicz2, and Grzegorz Sobon1
Author Affiliations
  • 1Laser & Fiber Electronics Group, Faculty of Electronics, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland
  • 2Department of Physics, Umeå University, 901 87 Umeå, Sweden
  • show less
    DOI: 10.3788/COL202119.081406 Cite this Article Set citation alerts
    Karol Krzempek, Dorota Tomaszewska, Aleksandra Foltynowicz, Grzegorz Sobon. Fiber-based optical frequency comb at 3.3 µm for broadband spectroscopy of hydrocarbons [Invited][J]. Chinese Optics Letters, 2021, 19(8): 081406 Copy Citation Text show less
    References

    [1] W. M. Yen, P. M. Selzer. Laser Spectroscopy of Solids(2013).

    [2] V. Lazic, S. Jovićević. Laser induced breakdown spectroscopy inside liquids: processes and analytical aspects. Spectrochim. Acta B At. Spectrosc., 101, 288(2014).

    [3] Y. Ma, A. Vicet, K. Krzempek. State-of-the-art laser gas sensing technologies. Appl. Sci., 10, 433(2020).

    [4] B. Fu, C. Zhang, W. Lyu, J. Sun, C. Shang, Y. Cheng, L. Xu. Recent progress on laser absorption spectroscopy for determination of gaseous chemical species. Appl. Spectrosc. Rev.(2020).

    [5] R. W. Solarz, J. A. Paisner. Laser Spectroscopy and Its Applications(2017).

    [6] Z. Du, S. Zhang, J. Li, N. Gao, K. Tong. Mid-infrared tunable laser-based broadband fingerprint absorption spectroscopy for trace gas sensing: a review. Appl. Sci., 9, 338(2019).

    [7] A. Genner, P. Martín-Mateos, H. Moser, B. Lendl. A quantum cascade laser-based multi-gas sensor for ambient air monitoring. Sensors, 20, 1850(2020).

    [8] K. Krzempek, G. Dudzik, A. Hudzikowski, A. Gluszek, K. Abramski. Highly-efficient fully-fiberized mid-infrared differential frequency generation source and its application to laser spectroscopy. Opto-Electron. Rev., 25, 269(2017).

    [9] N. Picqué, T. W. Hänsch. Frequency comb spectroscopy. Nat. Photon., 13, 146(2019).

    [10] F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, J. Ye. Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 µm. Opt. Lett., 34, 1330(2009).

    [11] T. W. Neely, T. A. Johnson, S. A. Diddams. High-power broadband laser source tunable from 3.0 µm to 4.4 µm based on a femtosecond Yb:fiber oscillator. Opt. Lett., 36, 4020(2011).

    [12] T. A. Johnson, S. A. Diddams. Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser. Appl. Phys. B, 107, 31(2012).

    [13] A. Ruehl, A. Gambetta, I. Hartl, M. E. Fermann, K. S. E. Eikema, M. Marangoni. Widely-tunable mid-infrared frequency comb source based on difference frequency generation. Opt. Lett., 37, 2232(2012).

    [14] G. Soboń, T. Martynkien, P. Mergo, L. Rutkowski, A. Foltynowicz. High-power frequency comb source tunable from 2.7 to 4.2 µm based on difference frequency generation pumped by an Yb-doped fiber laser. Opt. Lett., 42, 1748(2017).

    [15] L. Jin, V. Sonnenschein, M. Yamanaka, H. Tomita, T. Iguchi, A. Sato, K. Nozawa, K. Yoshida, S.-I. Ninomiya, N. Nishizawa. 3.1–5.2 µm coherent MIR frequency comb based on Yb-doped fiber laser. IEEE J. Sel. Top. Quantum Electron., 24, 0900907(2018).

    [16] F. Zhu, H. Hundertmark, A. A. Kolomenskii, J. Strohaber, R. Holzwarth, H. A. Schuessler. High-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator. Opt. Lett., 38, 2360(2013).

    [17] S. A. Meek, A. Poisson, G. Guelachvili, T. W. Hänsch, N. Picqué. Fourier transform spectroscopy around 3 µm with a broad difference frequency comb. Appl. Phys. B, 114, 573(2014).

    [18] F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, S. A. Diddams. Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy. Opt. Express, 23, 26814(2015).

    [19] L. Zhou, Y. Liu, H. Lou, Y. Di, G. Xie, Z. Zhu, Z. Deng, D. Luo, C. Gu, H. Chen, W. Li, W. Li. Octave mid-infrared optical frequency comb from Er:fiber-laser-pumped aperiodically poled Mg: LiNbO3. Opt. Lett., 45, 6458(2020).

    [20] X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, D. Turchinovich. Progress in Cherenkov femtosecond fiber lasers. J. Phys. D Appl. Phys., 49, 023001(2016).

    [21] C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schülzgen, R. Amezcua-Correa, A. Tünnermann, I. Pupeza, J. Limpert. Watt-scale super-octave mid-infrared intrapulse difference frequency generation. Light Sci. Appl., 7, 94(2018).

    [22] K. Liu, K. Liu, H. Liang, H. Liang, S. Qu, S. Qu, W. Li, W. Li, X. Zou, X. Zou, Y. Zhang, Q. J. Wang. High-energy mid-infrared intrapulse difference-frequency generation with 5.3% conversion efficiency driven at 3 µm. Opt. Express, 27, 37706(2019).

    [23] J. Zhang, K. Fritsch, Q. Wang, F. Krausz, K. F. Mak, O. Pronin. Intra-pulse difference-frequency generation of mid-infrared (2.7–20 µm) by random quasi-phase-matching. Opt. Lett., 44, 2986(2019).

    [24] D. M. B. Lesko, H. Timmers, S. Xing, A. Kowligy, A. J. Lind, S. A. Diddams. A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser. Nat. Photon., 15, 281(2021).

    [25] K. Krzempek, D. Tomaszewska, A. Głuszek, T. Martynkien, P. Mergo, J. Sotor, A. Foltynowicz, G. Soboń. Stabilized all-fiber source for generation of tunable broadband fCEO-free mid-IR frequency comb in the 7–9 µm range. Opt. Express, 27, 37435(2019).

    [26] V. S. de Oliveira, A. Ruehl, P. Masłowski, I. Hartl. Intensity noise optimization of a mid-infrared frequency comb difference-frequency generation source. Opt. Lett., 45, 1914(2020).

    [27] A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, J. Ye. Quantum-noise-limited optical frequency comb spectroscopy. Phys. Rev. Lett., 107, 233002(2011).

    [28] I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, E. J. Zak. The HITRAN2016 molecular spectroscopic database. J. Quantum Spectrosc. Radiat. Transf., 203, 3(2017).

    [29] R. K. Cole, A. S. Makowiecki, N. Hoghooghi, G. B. Rieker. Baseline-free quantitative absorption spectroscopy based on cepstral analysis. Opt. Express, 27, 37920(2019).

    Data from CrossRef

    [1] Yi Wang, Lei Shi, Wei Wu, Xianshun Ming, Qibing Sun, Leiran Wang, Wei Zhao. Simultaneous generation of a broadband MIR and NIR frequency comb in a GaP microring. Applied Optics, 61, 2629(2022).

    Karol Krzempek, Dorota Tomaszewska, Aleksandra Foltynowicz, Grzegorz Sobon. Fiber-based optical frequency comb at 3.3 µm for broadband spectroscopy of hydrocarbons [Invited][J]. Chinese Optics Letters, 2021, 19(8): 081406
    Download Citation