• Acta Optica Sinica
  • Vol. 36, Issue 6, 630003 (2016)
Wang Jiao*, Liu Rong, Yu Xuyao, Han Guang, and Xu Kexin
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201636.0630003 Cite this Article Set citation alerts
    Wang Jiao, Liu Rong, Yu Xuyao, Han Guang, Xu Kexin. Research on Existence of Floating Reference Position in Human Body[J]. Acta Optica Sinica, 2016, 36(6): 630003 Copy Citation Text show less
    References

    [1] Shih W C. Contrained regularization for noninvasive glucose sensing using Raman spectroscopy[J]. Journal of Innovative Optical Health Sciences, 2015, 8(4): 1550022.

    [2] Yu Zhenfang, Qiu Qi, Guo Yong. Dual modulation optical polarimetry for glucose monitoring[J]. Acta Optica Sinica, 2016, 36(1): 0117001.

    [3] Fu Lei, Su Ya, Li Guohua, et al.. Application of maximum likelihood type estimates in noninvasive blood glucose monitoring in vivo using optical coherence tomography[J]. Laser & Optoelectronics Progress, 2016, 53(3): 031701.

    [4] Su Ya, Meng Zhuo, Wang Longzhi, et al.. Correlation analysis and calibration of noninvasive blood glucose monitoring in vivo with optical coherence tomography[J]. Chinese J Lasers, 2014, 41(7): 0704002.

    [5] Ren Zhong, Liu Guodong, Huang Zhen. Study on photoacoustic noninvasive detection for blood glucose concentration based on tunable pulsed laser[J]. Chinese J Lasers, 2016, 43(2): 0204001.

    [6] Liakat S, Bors K A, Xu L, et al.. Noninvasive in vivo glucose sensing on human subjects using mid-infrared light[J]. Biomedical Optics Express, 2014, 5(7): 2397-2404.

    [7] Wu Chunyang, Lu Qipeng, Ding Haiquan, et al.. Noninvasive blood glucose sensing with near-infrared spectroscopy based on interstitial fluid[J]. Acta Optica Sinica, 2013, 33(11): 1117001.

    [8] Chen Xingdan, Gao Jing, Ding Haiquan. Infrared spectroscopy for non-invasive blood glucose monitoring[J]. Chinese Optics, 2012, 5(4): 317-326.

    [10] Liu Rong, Gu Xiaoyu, Xu Kexin. Research on the background correction in the non-invasive sensing of glucose by near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2008, 28(8): 1772-1775.

    [11] Jobsis F F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters[J]. Science, 1977, 198(4323): 1264-1267.

    [12] Ding Haiquan, Lu Qipeng, Peng Zhongqi, et al.. Progress in noninvasive biochemical examination by near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2010, 30(8): 2107-2110.

    [13] Amir O, Weinstein D, Zilberman S, et al.. Continuous noninvasive glucose monitoring technology based on “occlusion spectroscopy”[J]. Journal of Diabetes Science and Technology, 2007, 1(4): 463-469.

    [15] Luo Y H, An L, Ma Z, et al.. Discussion on floating-reference method for noninvasive measurement of blood glucose with near-infrared spectroscopy[C]. SPIE, 2006, 6094: 60940K.

    [16] Yu Hui, Qi Dan, Li Hengda, et al.. Study on the experimental application of floating-reference method to noninvasive blood glucose sensing[J]. Spectroscopy and Spectral Analysis, 2012, 32(3): 770-774.

    [17] Yang Y, Shi Z Z, Li C X, et al.. Simulation and validation of the radial reference point in non-invasive blood glucose sensing by NIR[J]. Nanotechnology and Precision Engineering, 2010, 8(2): 114-119.

    [18] Farrell T J, Patterson M S, Wilson B. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo[J]. Medical Physics, 1992, 19(4): 879-888.

    [19] Groenhuis R A J, Ferwerda H A, Ten Bosch J J. Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory[J]. Applied Optics, 1983, 22(16): 2456-2462.

    [20] Kienle A, Patterson M S. Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium[J]. Journal of the Optical Society of America A, 1997, 14(1): 246-254.

    [21] Haskell R C, Svaasand L O, Tsay T T, et al.. Boundary conditions for the diffusion equation in radiative transfer[J]. Journal of the Optical Society of America A, 1994, 11(10): 2727-2741.

    [22] Kohl M, Essenpreis M, Cope M. The influence of glucose concentration upon the transport of light in tissue-simulating phantoms[J]. Physics in Medicine and Biology, 1995, 40(7): 1267-1287.

    [23] Kohl-Bareis M, Cope M, Essenpreis M, et al.. Influence of glucose concentration on light scattering in tissue-simulating phantoms[J]. Optics Letters, 1994, 19(24): 2170-2172.

    [24] Maruo K, Tsurugi M, Chin J, et al.. Noninvasive blood glucose assay using a newly developed near-infrared system[J]. IEEE Journal of Selected Topic in Quantum Electronics, 2003, 9(2): 322-330.

    [25] Bashkatov A N, Genina E A, Tuchin V V. Optical properties of skin, subcutaneous, and muscle tissue: A review[J]. Journal of Innovative Optical Health Sciences, 2011, 4(1): 9-38.

    [26] Troy T L, Thennadil S N. Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm[J]. Journal of Biomedical Optics, 2001, 6(2): 167-176.

    CLP Journals

    [1] Liu Bingjie, Han Tongshuai, Guo Chao, Sun Di, Liu Jin. Sensitivity Analysis of Near-Infrared Diffuse Reflectance Spectroscopic Measurement in Turbid Medium[J]. Acta Optica Sinica, 2017, 37(2): 230005

    Wang Jiao, Liu Rong, Yu Xuyao, Han Guang, Xu Kexin. Research on Existence of Floating Reference Position in Human Body[J]. Acta Optica Sinica, 2016, 36(6): 630003
    Download Citation