• Photonics Insights
  • Vol. 2, Issue 2, R04 (2023)
Hyunjung Kang1、†, Dohyeon Lee1, Younghwan Yang1, Dong Kyo Oh1, Junhwa Seong1, Jaekyung Kim1, Nara Jeon1, Dohyun Kang1, and Junsuk Rho1、2、3、*
Author Affiliations
  • 1Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
  • 2Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
  • 3POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, Republic of Korea
  • show less
    DOI: 10.3788/PI.2023.R04 Cite this Article Set citation alerts
    Hyunjung Kang, Dohyeon Lee, Younghwan Yang, Dong Kyo Oh, Junhwa Seong, Jaekyung Kim, Nara Jeon, Dohyun Kang, Junsuk Rho. Emerging low-cost, large-scale photonic platforms with soft lithography and self-assembly[J]. Photonics Insights, 2023, 2(2): R04 Copy Citation Text show less
    References

    [1] H. M. A. Hamid, Z. Çelik-Butler. Characterization and performance analysis of Li-doped ZnO nanowire as a nano-sensor and nano-energy harvesting element. Nano Energy, 50, 159(2018).

    [2] Q. Shi, T. He, C. Lee. More than energy harvesting–combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy, 57, 851(2019).

    [3] Q. Hu et al. Achieve ultrahigh energy storage performance in BaTiO3–Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy, 67, 104264(2020).

    [4] H. Zhou et al. Chen optical nano-biosensing interface via nucleic acid amplification strategy: construction and application. Chem. Soc. Rev., 47, 1996(2018).

    [5] M. Yin et al. Recent development of fiber-optic chemical sensors and biosensors: mechanisms, materials, micro/nano-fabrications and applications. Coord. Chem. Rev., 376, 348(2018).

    [6] S. H. Raad, Z. Atlasbaf. Solar cell design using graphene-based hollow nano-pillars. Sci. Rep., 11, 16169(2021).

    [7] M. A. Adedeji, M. S. G. Hamed, G. T. Mola. Light trapping using copper decorated nano-composite in the hole transport layer of organic solar cell. Sol. Energy, 203, 83(2020).

    [8] J. W. Kim. 3-dimensional nano structures for semiconductor light source. J. Converg. Inf. Technol., 10, 96(2020).

    [9] S. Datta et al. Back-end-of-line compatible transistors for monolithic 3-D integration. IEEE Micro, 39, 8(2019).

    [10] S. Datta. Ten nanometre CMOS logic technology. Nat. Electron., 1, 500(2018).

    [11] Z. Liu et al. Spatially oriented plasmonic ‘nanograter’ structures. Sci. Rep., 6, 28764(2016).

    [12] X. Xuan, H. S. Yoon, J. Y. Park. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron., 109, 75(2018).

    [13] V. Garg, R. G. Mote, J. Fu. Focused ion beam direct fabrication of subwavelength nanostructures on silicon for multicolor generation. Adv. Mater. Technol., 3, 1800100(2018).

    [14] G. Seniutinas et al. Tipping solutions: emerging 3D nano-fabrication/-imaging technologies. Nanophotonics, 6, 923(2017).

    [15] D. Dieleman et al. Universal direct patterning of colloidal quantum dots by (extreme) ultraviolet and electron beam lithography. Nanoscale, 12, 11306(2020).

    [16] X. Zhu et al. Resonant laser printing of structural colors on high-index dielectric metasurfaces. Sci. Adv., 3, e1602487(2017).

    [17] B. Cord et al. Limiting factors in sub-10 nm scanning-electron-beam lithography. J. Vac. Sci. Technol. B, 27, 2616(2009).

    [18] H. I. Smith et al. Zone-plate-array lithography: a low-cost complement or competitor to scanning-electron-beam lithography. Microelectron. Eng., 83, 956(2006).

    [19] J. M. Park et al. Fabrication of tapered micropillars with high aspect-ratio based on deep X-ray lithography. Materials, 12, 2056(2019).

    [20] K. Park et al. Fabrication of polymer microstructures of various angles via synchrotron X-ray lithography using simple dimensional transformation. Materials, 11, 1460(2018).

    [21] Y. Wada, K. Uehara. Optical limitation in fine pattern photolithography. Jpn. J. Appl. Phys., 13, 2014(1974).

    [22] E. Seo, B. K. Choi, O. Kim. Determination of proximity effect parameters and the shape bias parameter in electron beam lithography. Microelectron. Eng., 53, 305(2000).

    [23] Z. Lu et al. Application of micro/nanofabrication techniques to on-chip molecular electronics. Small Methods, 5, 2001034(2021).

    [24] M. Kim, D. K. Brown, O. Brand. Nanofabrication for all-soft and high-density electronic devices based on liquid metal. Nat. Commun., 11, 1002(2020).

    [25] J. del Barrio, C. Sánchez-Somolinos. Light to shape the future: from photolithography to 4D printing. Adv. Opt. Mater., 7, 1900598(2019).

    [26] S. Zhu et al. Recent advances in patterning natural polymers: from nanofabrication techniques to applications. Small Methods, 5, 2001060(2021).

    [27] W. He, X. Ye, T. Cui. Progress of shrink polymer micro- and nanomanufacturing. Microsyst. Nanoeng., 7, 88(2021).

    [28] L. Hui, R. Bai, H. Liu. DNA-based nanofabrication for nanoelectronics. Adv. Funct. Mater., 32, 2112331(2022).

    [29] E. Albisetti et al. Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography. Nat. Nanotechnol., 11, 545(2016).

    [30] E. Albisetti et al. Thermochemical scanning probe lithography of protein gradients at the nanoscale. Nanotechnology, 27, 315302(2016).

    [31] J. A. Rogers, R. G. Nuzzo. Recent progress in soft lithography. Mater. Today, 8, 50(2005).

    [32] M. A. Naveed et al. Single-step fabricable flexible metadisplays for sensitive chemical/biomedical packaging security and beyond. ACS Appl. Mater. Interfaces, 14, 31194(2022).

    [33] D. K. Oh et al. Nanoimprint lithography for high-throughput fabrication of metasurfaces. Front. Optoelectron., 14, 229(2021).

    [34] J. Kim et al. One-step printable platform for high-efficiency metasurfaces down to the deep-ultraviolet region. Light Sci. Appl., 12, 68(2023).

    [35] B. Ko et al. Humidity-responsive RGB-pixels via swelling of 3D nanoimprinted polyvinyl alcohol. Adv. Sci., 10, 2204469(2023).

    [36] B. Ko et al. Tunable metasurfaces via the humidity responsive swelling of single-step imprinted polyvinyl alcohol nanostructures. Nat. Commun., 13, 6256(2022).

    [37] M. Kim et al. Facile fabrication of stretchable photonic Ag nanostructures by soft-contact patterning of ionic Ag solution coatings. Nanophotonics, 11, 2693(2022).

    [38] J. Kim et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nat. Mater., 22, 474(2023).

    [39] S. Y. Chou, P. R. Krauss, P. J. Renstrom. Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett., 67, 3114(1995).

    [40] W. Kim et al. Thermally-curable nanocomposite printing for the scalable manufacturing of dielectric metasurfaces. Microsyst. Nanoeng., 8, 73(2022).

    [41] M. Modaresialam et al. Nanoimprint lithography processing of inorganic-based materials. Chem. Mater., 33, 5464(2021).

    [42] M. H. Asif et al. Comparison of UV-curable materials for high-resolution polymer nanoimprint stamps. Micro Nano Eng., 14, 100118(2022).

    [43] H. Hiroshima, M. Komuro. Control of bubble defects in UV nanoimprint. Jpn. J. Appl. Phys., 46, 6391(2007).

    [44] H. Hiroshima et al. UV nanoimprint in pentafluoropropane at a minimal imprint pressure. Jpn. J. Appl. Phys., 49, 06GL01(2010).

    [45] P. Yi et al. Roll-to-roll UV imprinting lithography for micro/nanostructures. J. Vac. Sci. Technol. B, 33, 060801(2015).

    [46] A. Jacobo-Martín et al. Roll-to-roll nanoimprint lithography of high efficiency Fresnel lenses for micro-concentrator photovoltaics. Opt. Express, 29, 34135(2021).

    [47] J. Snieder, M. Dielen, R. A. J. van Ostayen. Simulating the residual layer thickness in roll-to-plate nanoimprinting with tensioned webs. Micromachines, 13, 461(2022).

    [48] S. H. Ahn, L. J. Guo. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Adv. Mater., 20, 20442049(2008).

    [49] V. J. Einck et al. Scalable nanoimprint lithography process for manufacturing visible metasurfaces composed of high aspect ratio TiO2 meta-atoms. ACS Photonics, 8, 2400(2021).

    [50] N. Atthi et al. Fabrication of high aspect ratio micro-structures with superhydrophobic and oleophobic properties by using large-area roll-to-plate nanoimprint lithography. Nanomaterials, 11, 339(2021).

    [51] G. Kim et al. Metasurface-driven full-space structured light for three-dimensional imaging. Nat. Commun., 13, 5920(2022).

    [52] J.-H. Choi et al. Enhancement of organic solar cell efficiency by patterning the PEDOT:PSS hole transport layer using nanoimprint lithography. Org. Electron., 14, 3180(2013).

    [53] F. Jiao et al. Enhanced performance for solar cells with moth-eye structure fabricated by UV nanoimprint lithography. Microelectron. Eng., 103, 126(2013).

    [54] X. Hu et al. III-nitride ultraviolet, blue and green LEDs with SiO2 photonic crystals fabricated by UV-nanoimprint lithography. Mater. Sci. Semicond. Process., 79, 61(2018).

    [55] F. Meng et al. Fabrication and characterization of bilayer metal wire-grid polarizer using nanoimprint lithography on flexible plastic substrate. Microelectron. Eng., 88, 3108(2011).

    [56] L. Wang et al. High-throughput fabrication of compact and flexible bilayer nanowire grid polarizers for deep-ultraviolet to infrared range. J. Vac. Sci. Technol. B, 32, 031206(2014).

    [57] M. Kim et al. Observation of enhanced optical spin Hall effect in a vertical hyperbolic metamaterial. ACS Photonics, 6, 2530(2019).

    [58] A. Jacobo-Martín et al. Bioinspired antireflective flexible films with optimized mechanical resistance fabricated by roll to roll thermal nanoimprint. Sci. Rep., 11, 2419(2021).

    [59] W. Kang et al. Large-area flexible infrared nanowire grid polarizer fabricated using nanoimprint lithography. Appl. Opt., 57, 5230(2018).

    [60] Y. Gu et al. The fabrication of anti-reflection grating structures film for solar cells using vibration-assisted UV nanoimprint lithography. Sol. Energy, 241, 172(2022).

    [61] K. Kim et al. Facile nanocasting of dielectric metasurfaces with sub-100 nm resolution. ACS Appl. Mater. Interfaces, 11, 26109(2019).

    [62] J. G. Ok et al. Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters. Appl. Phys. Lett., 101, 223102(2012).

    [63] P. Campbell, M. A. Green. Light trapping properties of pyramidally textured surfaces. J. Appl. Phys., 62, 243(1987).

    [64] B. Wang, T. Gao, W. P. Leu. Broadband light absorption enhancement in ultrathin film crystalline silicon solar cells with high index of refraction nanosphere arrays. Nano Energy, 19, 471(2016).

    [65] M. Moreno, D. Daineka, P. Roca i Cabarrocas. Plasma texturing for silicon solar cells: from pyramids to inverted pyramids-like structures. Sol. Energy Mater. Sol. Cells, 94, 733(2010).

    [66] A. P. Amalathas, M. M. Alkaisi. Efficient light trapping nanopyramid structures for solar cells patterned using UV nanoimprint lithography. Mater. Sci. Semicond. Process., 57, 54(2017).

    [67] Y. Wang et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun., 12, 5560(2021).

    [68] W. Sun et al. Lead halide perovskite vortex microlasers. Nat. Commun., 11, 4862(2020).

    [69] W. Yang et al. Dynamic bifunctional metasurfaces for holography and color display. Adv. Mater., 33, 2101258(2021).

    [70] T. Badloe et al. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths. Adv. Sci., 8, 2102646(2021).

    [71] I. Kim et al. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators. Adv. Mater., 32, 2004664(2020).

    [72] S. So et al. Multicolor and 3D holography generated by inverse-designed single-cell metasurfaces. Adv. Mater., 35, 2208520(2022).

    [73] Y. Wang et al. The development progress of surface structure diffraction gratings: from manufacturing technology to spectroscopic applications. Appl. Sci., 12, 6503(2022).

    [74] F. Greco et al. Micro-wrinkled palladium surface for hydrogen sensing and switched detection of lower flammability limit. Int. J. Hydrog. Energy, 37, 17529(2012).

    [75] J. Lee et al. Highly mobile palladium thin films on an elastomeric substrate: nanogap-based hydrogen gas sensors. Angew. Chem. Int. Ed., 50, 5301(2011).

    [76] S. H. Lim et al. Flexible palladium-based H2 sensor with fast response and low leakage detection by nanoimprint lithography. ACS Appl. Mater. Interfaces, 5, 7274(2013).

    [77] S. Takaloo, M. Moghimi. Wearable electrochemical flexible biosensors: with the focus on affinity biosensors. Sens. Bio-Sens. Res., 32, 100403(2021).

    [78] H. Wang et al. Robust tattoo electrode prepared by paper-assisted water transfer printing for wearable health monitoring. IEEE Sens. J., 22, 3817(2022).

    [79] M. C. McAlpine et al. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater., 6, 379(2007).

    [80] J. Kim et al. Simple, fast, and scalable reverse-offset printing of micropatterned copper nanowire electrodes with sub-10 µm resolution. ACS Appl. Mater. Interfaces, 14, 5807(2022).

    [81] S. Joo et al. Intaglio contact printing of versatile carbon nanotube composites and its applications for miniaturizing high-performance devices. Small, 18, 2106174(2022).

    [82] M. K. Choi et al. Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun., 6, 7149(2015).

    [83] H. Luo et al. Thermal controlled tunable adhesive for deterministic assembly by transfer printing. Adv. Funct. Mater., 31, 2010297(2021).

    [84] S. Kim et al. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc. Natl. Acad. Sci., 107, 17095(2010).

    [85] A. Zumeit et al. Direct roll transfer printed silicon nanoribbon arrays based high-performance flexible electronics. npj Flex. Electron., 5, 18(2021).

    [86] P. Mach et al. Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors. Appl. Phys. Lett., 78, 3592(2001).

    [87] B. Tian et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science, 329, 830(2010).

    [88] C. H. Lee, D. R. Kim, X. Zheng. Fabrication of nanowire electronics on nonconventional substrates by water-assisted transfer printing method. Nano Lett., 11, 3435(2011).

    [89] Z. Wang et al. Intrinsically stretchable organic solar cells beyond 10% power conversion efficiency enabled by transfer printing method. Adv. Funct. Mater., 31, 2103534(2021).

    [90] A. Mohapatra et al. Bilayer polymer solar cells prepared with transfer printing of active layers from controlled swelling/de-swelling of PDMS. Nano Energy, 63, 103826(2019).

    [91] A. Zumeit et al. High-performance p-channel transistors on flexible substrate using direct roll transfer stamping. Jpn. J. Appl. Phys., 61, SC1042(2022).

    [92] J. B. Park et al. Transfer printing of vertical-type microscale light-emitting diode array onto flexible substrate using biomimetic stamp. Opt. Express, 27, 6832(2019).

    [93] X. Liang, Z. Fu, S. Y. Chou. Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett., 7, 3840(2007).

    [94] H.-S. Kim et al. Self-assembled nanodielectrics and silicon nanomembranes for low voltage, flexible transistors, and logic gates on plastic substrates. Appl. Phys. Lett., 95, 183504(2009).

    [95] J. Rho et al. PbZrxTi1-xO3 ferroelectric thin-film capacitors for flexible nonvolatile memory applications. IEEE Electron Device Lett., 31, 1017(2010).

    [96] M. Koo et al. Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett., 12, 4810(2012).

    [97] R.-H. Kim et al. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett., 11, 3881(2011).

    [98] Y. Qi et al. Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett., 10, 524(2010).

    [99] R. C. Webb et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater., 12, 938(2013).

    [100] J. Nam et al. Transfer printed flexible and stretchable thin film solar cells using a water-soluble sacrificial layer. Adv. Energy Mater., 6, 1601269(2016).

    [101] Y. Chen et al. Reliable patterning, transfer printing and post-assembly of multiscale adhesion-free metallic structures for nanogap device applications. Adv. Funct. Mater., 30, 2002549(2020).

    [102] H. Zhang et al. Graphene as a transparent conductive electrode in GaN-based LEDs. Materials, 15, 2203(2022).

    [103] S. Dewan et al. Room temperature electroluminescence from Laser MBE grown gallium nitride LEDs. Mater. Sci. Eng. B, 260, 114655(2020).

    [104] Q. Guo et al. Enhanced heat dissipation in gallium nitride-based light-emitting diodes by piezo-phototronic effect. Nano Lett., 21, 4062(2021).

    [105] H. Kim et al. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proc. Natl. Acad. Sci., 108, 10072(2011).

    [106] Y. Yang et al. Revisiting optical material platforms for efficient linear and nonlinear dielectric metasurfaces in the ultraviolet, visible, and infrared. ACS Photonics, 10, 307(2023).

    [107] A. Arbabi et al. Planar metasurface retroreflector. Nat. Photonics, 11, 415(2017).

    [108] J. Kim et al. Metasurface holography reaching the highest efficiency limit in the visible via one-step nanoparticle-embedded-resin printing. Laser Photonics Rev., 16, 2200098(2022).

    [109] H. Liu et al. Transfer printing of solution-processed 3D ZnO nanostructures with ultra-high yield for flexible metasurface color filter. Adv. Mater. Interfaces, 9, 2101963(2022).

    [110] J. G. Son et al. Sub-10 nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography. Adv. Mater., 25, 4723(2013).

    [111] D. Ho et al. Capillary force lithography: the versatility of this facile approach in developing nanoscale applications. Nanoscale, 7, 401(2015).

    [112] C. D. Bandara et al. Bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli. ACS Appl. Mater. Interfaces, 9, 6746(2017).

    [113] H. Zhou et al. Bio-inspired photonic materials: prototypes and structural effect designs for applications in solar energy manipulation. Adv. Funct. Mater., 28, 1705309(2018).

    [114] Q. Li, M. G. Ji, J. Kim. Grayscale nanopixel printing at sub-10-nanometer vertical resolution via light-controlled nanocapillarity. ACS Nano, 14, 6058(2020).

    [115] A. R. Parker, H. E. Townley. Biomimetics of photonic nanostructures. Nat. Nanotechnol., 2, 347(2007).

    [116] J. Henzie, M. H. Lee, T. W. Odom. Multiscale patterning of plasmonic metamaterials. Nat. Nanotechnol., 2, 549(2007).

    [117] C. Ye et al. Hierarchical structure: silicon nanowires standing on silica microwires. Adv. Mater., 16, 1019(2004).

    [118] Y.-T. Tseng et al. Fabrication of double-length-scale patterns via lithography, block copolymer templating, and electrodeposition. Adv. Mater., 19, 3584(2007).

    [119] Y. Xia, G. M. Whitesides. Soft lithography. Angew. Chem. Int. Ed., 37, 550(1998).

    [120] K. Y. Suh, H. H. Lee. Capillary force lithography: large-area patterning, self-organization, and anisotropic dewetting. Adv. Funct. Mater., 12, 405(2002).

    [121] H. E. Jeong et al. Generation and self-replication of monolithic, dual-scale polymer structures by two-step capillary-force lithography. Small, 4, 1913(2008).

    [122] R. Kwak, H. E. Jeong, K. Y. Suh. Fabrication of monolithic bridge structures by vacuum-assisted capillary-force lithography. Small, 5, 790(2009).

    [123] S. H. Lee et al. Continuous tip widening technique for roll-to-roll fabrication of dry adhesives. Coatings, 8, 349(2018).

    [124] X. Yu et al. Solvent assisted capillary force lithography. Polymer, 46, 11099(2005).

    [125] D. Zhang et al. Fabrication of diffractive optical elements on 3-D curved surfaces by capillary force lithography. Opt. Express, 18, 15009(2010).

    [126] M. K. Kwak, Y.-W. Lim. Multi-functional nanopatterned optical films fabricated using capillary force lithography. J. Colloid Interface Sci., 367, 460(2012).

    [127] K. A. Moga et al. Rapidly-dissolvable microneedle patches via a highly scalable and reproducible soft lithography approach. Adv. Mater., 25, 5060(2013).

    [128] J. M. R. Tan et al. A large-scale superhydrophobic surface-enhanced Raman scattering (SERS) platform fabricated via capillary force lithography and assembly of Ag nanocubes for ultratrace molecular sensing. Phys. Chem. Chem. Phys., 16, 26983(2014).

    [129] D. H. Kim, H. J. An, J.-M. Myoung. Red-emitting micro PeLEDs for UHD displays by using capillary force lithography. Chem. Eng. J., 448, 137727(2022).

    [130] Y.-H. Kim, H. Cho, T.-W. Lee. Metal halide perovskite light emitters. Proc. Natl. Acad. Sci., 113, 11694(2016).

    [131] S.-R. Kim, J.-H. Kim, J.-W. Park. Wearable and transparent capacitive strain sensor with high sensitivity based on patterned Ag nanowire networks. ACS Appl. Mater. Interfaces, 9, 26407(2017).

    [132] B. Du et al. Highly sensitive hydrogen sensor based on an in-fiber Mach-Zehnder interferometer with polymer infiltration and Pt-loaded WO3 coating. Opt. Express, 29, 4147(2021).

    [133] J. Tian et al. A ppb-level hydrogen sensor based on activated Pd nanoparticles loaded on oxidized nickel foam. Sens. Actuators B Chem., 329, 129194(2021).

    [134] H.-S. Lee et al. Hydrogen gas sensors using palladium nanogaps on an elastomeric substrate. Adv. Mater., 33, 2005929(2021).

    [135] L. Bannenberg, H. Schreuders, B. Dam. Tantalum-palladium: hysteresis-free optical hydrogen sensor over 7 orders of magnitude in pressure with sub-second response. Adv. Funct. Mater., 31, 2010483(2021).

    [136] P. Offermans et al. Ultralow-power hydrogen sensing with single palladium nanowires. Appl. Phys. Lett., 94, 223110(2009).

    [137] J. Zou et al. Regiospecific linear assembly of Pd nanocubes for hydrogen gas sensing. Chem. Commun., 48, 1033(2012).

    [138] H. C. Bauser et al. Photonic crystal waveguides for >90% light trapping efficiency in luminescent solar concentrators. ACS Photonics, 7, 2122(2020).

    [139] G. M. Katyba et al. Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments. Adv. Opt. Mater., 6, 1800573(2018).

    [140] F. Wu et al. Ultra-large omnidirectional photonic band gaps in one-dimensional ternary photonic crystals composed of plasma, dielectric and hyperbolic metamaterial. Opt. Mater., 111, 110680(2021).

    [141] W.-G. Kim et al. Three-dimensional plasmonic nanocluster-driven light–matter interaction for photoluminescence enhancement and picomolar-level biosensing. Nano Lett., 22, 4702(2022).

    [142] Y. Qi et al. Rotational periodicity display of the tunable wettability pattern in a photoswitch based on a response bilayer photonic crystal. ACS Appl. Mater. Interfaces, 12, 9664(2020).

    [143] J. Lou et al. Surface plasmon resonance photonic crystal fiber biosensor based on gold-graphene layers. Opt. Fiber Technol., 50, 206(2019).

    [144] D. Kou et al. High-sensitive and stable photonic crystal sensors for visual detection and discrimination of volatile aromatic hydrocarbon vapors. Chem. Eng. J., 375, 121987(2019).

    [145] H. Aly et al. Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal. RSC Adv., 10, 31765(2020).

    [146] K. Landfester. Synthesis of colloidal particles in miniemulsions. Annu. Rev. Mater. Res., 36, 231(2006).

    [147] Y.-C. Lu, K.-S. Chou. A simple and effective route for the synthesis of nano-silver colloidal dispersions. J. Chin. Inst. Chem. Eng., 39, 673(2008).

    [148] B.-I. Lee et al. Synthesis of colloidal aqueous suspensions of a layered gadolinium hydroxide: a potential MRI contrast agent. Dalton Trans., 2009, 2490(2009).

    [149] P. P. Ghimire, M. Jaroniec. Renaissance of Stöber method for synthesis of colloidal particles: new developments and opportunities. J. Colloid Interface Sci., 584, 838(2021).

    [150] S.-H. Wu, C.-Y. Mou, H.-P. Lin. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev., 42, 3862(2013).

    [151] A. S. Tse, Z. Wu, S. A. Asher. Synthesis of dyed monodisperse poly(methyl methacrylate) colloids for the preparation of submicron periodic light-absorbing arrays. Macromolecules, 28, 6533(1995).

    [152] M. J. Percy, S. P. Armes. Surfactant-free synthesis of colloidal poly(methyl methacrylate)/silica nanocomposites in the absence of auxiliary comonomers. Langmuir, 18, 4562(2002).

    [153] C. E. Reese et al. Synthesis of highly charged, monodisperse polystyrene colloidal particles for the fabrication of photonic crystals. J. Colloid Interface Sci., 232, 76(2000).

    [154] L. A. Dykman, N. G. Khlebtsov. Methods for chemical synthesis of colloidal gold. Russ. Chem. Rev., 88, 229(2019).

    [155] K. P. Velikov, G. E. Zegers, A. van Blaaderen. Synthesis and characterization of large colloidal silver particles. Langmuir, 19, 1384(2003).

    [156] W. Zhang, X. Qiao, J. Chen. Synthesis of nanosilver colloidal particles in water/oil microemulsion. Colloids Surf. Physicochem. Eng. Asp., 299, 22(2007).

    [157] R. A. Sperling, W. J. Parak. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. Royal Soc. A, 368, 1333(2010).

    [158] V. N. Manoharan, M. T. Elsesser, D. J. Pine. Dense packing and symmetry in small clusters of microspheres. Science, 301, 483(2003).

    [159] A. Winkleman et al. Directed self-assembly of spherical particles on patterned electrodes by an applied electric field. Adv. Mater., 17, 1507(2005).

    [160] K. H. Li, H. W. Choi. InGaN light-emitting diodes with indium-tin-oxide photonic crystal current-spreading layer. J. Appl. Phys., 110, 053104(2011).

    [161] A. Mihi et al. Oriented colloidal-crystal thin films by spin-coating microspheres dispersed in volatile media. Adv. Mater., 18, 2244(2006).

    [162] D. B. Mitzi et al. High-mobility ultrathin semiconducting films prepared by spin coating. Nature, 428, 299(2004).

    [163] F. Zhang et al. Ultrathin film organic transistors: precise control of semiconductor thickness via spin-coating. Adv. Mater., 25, 1401(2013).

    [164] H. Wang et al. Generation of spin-dependent accelerating beam with geometric metasurface. Adv. Opt. Mater., 7, 1900552(2019).

    [165] P. Jiang, M. J. McFarland. Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. J. Am. Chem. Soc., 126, 13778(2004).

    [166] J. Chen et al. Controllable fabrication of 2D colloidal-crystal films with polystyrene nanospheres of various diameters by spin-coating. Appl. Surf. Sci., 270, 6(2013).

    [167] M. H. Kim et al. Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly. Adv. Funct. Mater., 15, 1329(2005).

    [168] N. Vogel et al. Wafer-scale fabrication of ordered binary colloidal monolayers with adjustable stoichiometries. Adv. Funct. Mater., 21, 3064(2011).

    [169] T. Kohoutek et al. Controlled self-assembly of Langmuir-Blodgett colloidal crystal films of monodispersed silica particles on non-planar substrates. Colloids Surf. Physicochem. Eng. Asp., 593, 124625(2020).

    [170] M. Maillard et al. Rings and hexagons made of nanocrystals: a Marangoni effect. J. Phy. Chem. B, 104, 11871(2000).

    [171] J. A. Fan et al. Plasmonic mode engineering with templated self-assembled nanoclusters. Nano Lett., 12, 5318(2012).

    [172] C. Hanske et al. Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly. Nano Lett., 14, 6863(2014).

    [173] M. R. Kim et al. Transferable crack-free colloidal crystals on an elastomeric matrix with surface relief. Adv. Funct. Mater., 23, 5700(2013).

    [174] E. V. Yakovlev et al. Tunable two-dimensional assembly of colloidal particles in rotating electric fields. Sci. Rep., 7, 13727(2017).

    [175] J. Sun et al. Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces. Langmuir, 26, 7859(2010).

    [176] P. Gao et al. Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing. Nano Lett., 15, 4591(2015).

    [177] N. Arai, S. Watanabe, M. T. Miyahara. On the convective self-assembly of colloidal particles in nanofluid based on in situ measurements of interaction forces. Langmuir, 35, 11533(2019).

    [178] A. Holm et al. Langmuir–Blodgett deposition of graphene oxide—identifying Marangoni flow as a process that fundamentally limits deposition control. Langmuir, 34, 9683(2018).

    [179] Y. Cai, B. Zhang. Newby Marangoni flow-induced self-assembly of hexagonal and stripelike nanoparticle patterns. J. Am. Chem. Soc., 130, 6076(2008).

    [180] W. Cheon et al. Enhancing the plasmonic component of photonic–plasmonic resonances in self-assembled dielectric spheres on Ag. J. Mater. Chem., 9, 1764(2021).

    [181] Y. Yin, Y. Xia. Self-assembly of monodispersed spherical colloids into complex aggregates with well-defined sizes, shapes, and structures. Adv. Mater., 13, 267(2001).

    [182] V. Gupta et al. Mechanotunable surface lattice resonances in the visible optical range by soft lithography templates and directed self-assembly. ACS Appl. Mater. Interfaces, 11, 28189(2019).

    [183] M. Wang, L. He, Y. Yin. Magnetic field guided colloidal assembly. Mater. Today, 16, 110(2013).

    [184] A. F. Demirörs et al. Colloidal assembly directed by virtual magnetic moulds. Nature, 503, 99(2013).

    [185] L. He et al. Magnetic assembly and patterning of general nanoscale materials through nonmagnetic templates. Nano Lett., 13, 264(2013).

    [186] J. R. Oh et al. Fabrication of wafer-scale polystyrene photonic crystal multilayers via the layer-by-layer scooping transfer technique. J. Mater. Chem., 21, 14167(2011).

    [187] L. Zhang et al. Layer-by-layer approach to (2+1)D photonic crystal superlattice with enhanced crystalline integrity. Small, 11, 4910(2015).

    [188] Y. Wang et al. Colloids with valence and specific directional bonding. Nature, 491, 51(2012).

    [189] Y. Zhao et al. Metallo-dielectric photonic crystals for surface-enhanced Raman scattering. ACS Nano, 5, 3027(2011).

    [190] C. Song et al. Large-area nanosphere self-assembly monolayers for periodic surface nanostructures with ultrasensitive and spatially uniform SERS sensing. Small, 18, 2104202(2022).

    [191] N. Suzuki et al. Microfluidically patterned dome-shaped photonic colloidal crystals exhibiting structural colors with low angle dependency. Adv. Opt. Mater., 5, 1600900(2017).

    [192] S.-M. Yang et al. Nanomachining by colloidal lithography. Small, 2, 458(2006).

    [193] H. Fredriksson et al. Hole–mask colloidal lithography. Adv. Mater., 19, 4297(2007).

    [194] K. Zhong et al. Instantaneous, simple, and reversible revealing of invisible patterns encrypted in robust hollow sphere colloidal photonic crystals. Adv. Mater., 30, 1707246(2018).

    [195] J. Shen et al. Self-assembled chiral phosphorescent microflowers from Au nanoclusters with dual-mode pH sensing and information encryption. ACS Nano, 15, 4947(2021).

    [196] M. Schöttle et al. Time–temperature integrating optical sensors based on gradient colloidal crystals. Adv. Mater., 33, 2101948(2021).

    [197] R. Kim et al. Metal nanoparticle array as a tunable refractive index material over broad visible and infrared wavelengths. ACS Photonics, 5, 1189(2018).

    [198] X. Xu et al. Multiple-patterning nanosphere lithography for fabricating periodic three-dimensional hierarchical nanostructures. ACS Nano, 11, 10384(2017).

    [199] A. Sarycheva, Y. Gogotsi. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater., 32, 3480(2020).

    [200] F. Li et al. Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy. Spectrochim. Acta. A, 189, 621(2018).

    [201] S. Kasani, K. Curtin, N. Wu. A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications. Nanophotonics, 8, 2065(2019).

    [202] D. G. Kotsifaki, S. N. Chormaic. Plasmonic optical tweezers based on nanostructures: fundamentals, advances and prospects. Nanophotonics, 8, 1227(2019).

    [203] Y. Li et al. Highly reproducible SERS sensor based on self-assembled Au nanocubic monolayer film for sensitive and quantitative detection of glutathione. Appl. Surf. Sci., 540, 148381(2021).

    [204] T. K. Naqvi et al. Silver nanoparticles decorated reduced graphene oxide (rGO) SERS sensor for multiple analytes. Appl. Surf. Sci., 478, 887(2019).

    [205] G. Barbillon, A. Ivanov, A. K. Sarychev. Hybrid Au/Si disk-shaped nanoresonators on gold film for amplified SERS chemical sensing. Nanomaterials, 9, 1588(2019).

    [206] D. Joseph et al. Synthesis of AuAg@Ag core@shell hollow cubic nanostructures as SERS substrates for attomolar chemical sensing. Sens. Actuators B Chem., 281, 471(2019).

    [207] Z. Liu et al. A two-dimensional fingerprint nanoprobe based on black phosphorus for bio-SERS analysis and chemo-photothermal therapy. Nanoscale, 10, 18795(2018).

    [208] X. Zhao et al. Hydrophobic multiscale cavities for high-performance and self-cleaning surface-enhanced Raman spectroscopy (SERS) sensing. Nanophotonics, 9, 4761(2020).

    [209] X. Song et al. Selective preparation of Mo2N and MoN with high surface area for flexible SERS sensing. Nano Lett., 21, 4410(2021).

    [210] E. Shkondin et al. High aspect ratio plasmonic nanotrench structures with large active surface area for label-free mid-infrared molecular absorption sensing. ACS Appl. Nano Mater., 1, 1212(2018).

    [211] M. Vlk et al. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy. Light Sci. Appl., 10, 26(2021).

    [212] D. Lin et al. Large-area Au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy. ACS Nano, 11, 1478(2017).

    [213] Y. Guan et al. In situ chemical patterning technique. Adv. Funct. Mater., 32, 2107945(2022).

    [214] X. Zhang et al. Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles. Nanoscale, 9, 3114(2017).

    [215] Y. Yang et al. Revealing structural disorder in hydrogenated amorphous silicon for a low-loss photonic platform at visible frequencies. Adv. Mater., 33, 2005893(2021).

    [216] S. Shrestha et al. Broadband achromatic dielectric metalenses. Light Sci. Appl., 7, 85(2018).

    [217] J. Y. Kim et al. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly. Nat. Commun., 7, 12911(2016).

    [218] H. Negoro et al. Template-assisted self-assembly of colloidal silicon nanoparticles for all-dielectric nanoantenna. Adv. Opt. Mater., 10, 2102750(2022).

    [219] Y. Cho et al. Scalable, highly uniform, and robust colloidal Mie resonators for all-dielectric soft meta-optics. Adv. Opt. Mater., 7, 1801167(2019).

    [220] H. Lu et al. Enhanced diffuse reflectance and microstructure properties of hybrid titanium dioxide nanocomposite coating. Nanoscale Res. Lett., 13, 328(2018).

    [221] D. Lee et al. Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared. Microsyst. Nanoeng., 7, 14(2021).

    [222] Y. Wang et al. Interactively full-color changeable electronic fiber sensor with high stretchability and rapid response. Adv. Funct. Mater., 30, 2000356(2020).

    [223] W. Yuan et al. Structural color fibers directly drawn from colloidal suspensions with controllable optical properties. ACS Appl. Mater. Interfaces, 11, 19388(2019).

    [224] C. Kang, A. Honciuc. Self-assembly of Janus nanoparticles into transformable suprastructures. J. Phys. Chem. Lett., 9, 1415(2018).

    [225] H. Wang et al. Anisotropic structural color particles from colloidal phase separation. Sci. Adv., 6, eaay1438(2020).

    [226] M. Kuang et al. Inkjet printing patterned photonic crystal domes for wide viewing-angle displays by controlling the sliding three phase contact line. Adv. Opt. Mater., 2, 34(2014).

    [227] A. M. Mansour. Fabrication and characterization of a photodiode based on 5′,5′′-dibromo-o-cresolsulfophthalein (BCP). Silicon, 11, 1989(2019).

    [228] E. W. Cochran, C. J. Garcia-cervera, G. H. Fredrickson. Stability of the gyroid phase in diblock copolymers at strong segregation. Macromolecules, 39, 2449(2006).

    [229] A. B. Chang, F. S. Bates. The ABCs of block polymers. Macromolecules, 53, 2765(2020).

    [230] M. T. Islam et al. Self-assembly of a liquid crystal ABA triblock copolymer in a B-selective organic solvent. Polymer, 66, 94(2015).

    [231] P. W. Majewski. Arbitrary lattice symmetries via block copolymer nanomeshes. Nat. Commun., 6, 7448(2015).

    [232] K. G. Tavakkoli et al. Multilayer block copolymer meshes by orthogonal self-assembly. Nat. Commun., 7, 10518(2016).

    [233] H. Huang et al. Self-directed self-assembly of 3D tailored block copolymer nanostructures. ACS Nano, 14, 15182(2020).

    [234] G. von Freymann et al. Three-dimensional nanostructures for photonics. Adv. Funct. Mater., 20, 1038(2010).

    [235] A. P. Lane et al. Directed self-assembly and pattern transfer of five nanometer block copolymer lamellae. ACS Nano, 11, 7656(2017).

    [236] J. H. Mun et al. Controlled segmentation of metal nanowire array by block copolymer lithography and reversible ion loading. Small, 13, 1603939(2017).

    [237] T. N. Hoheisel, K. Hur, U. B. Wiesner. Block copolymer-nanoparticle hybrid self-assembly. Prog. Polym. Sci., 40, 3(2015).

    [238] A. Horechyy et al. A step-wise approach for dual nanoparticle patterning via block copolymer self-assembly. Adv. Funct. Mater., 23, 483(2013).

    [239] V. B. Leffler et al. Controlled assembly of block copolymer coated nanoparticles in 2D arrays. Angew. Chem. Int. Ed., 131, 8629(2019).

    [240] M. P. Stoykovich et al. Directed assembly of block copolymer blends into nonregular device-oriented structures. Science, 308, 1442(2005).

    [241] C. T. Black, O. Bezencenet. Nanometer-scale pattern registration and alignment by directed diblock copolymer self-assembly. IEEE Trans. Nanotechnol., 3, 412(2004).

    [242] S.-M. Park et al. Directed assembly of lamellae- forming block copolymers by using chemically and topographically patterned substrates. Adv. Mater., 19, 607(2007).

    [243] J. Y. Cheng et al. Fabrication of nanostructures with long-range order using block copolymer lithography. Appl. Phys. Lett., 81, 3657(2002).

    [244] J. Y. Cheng et al. Dense self-assembly on sparse chemical patterns: rectifying and multiplying lithographic patterns using block copolymers. Adv. Mater., 20, 3155(2008).

    [245] J. Chai, J. M. Buriak. Using cylindrical domains of block copolymers to self-assemble and align metallic nanowires. ACS Nano, 2, 489(2008).

    [246] I. Gunkel. Directing block copolymer self-assembly on patterned substrates. Small, 14, 1802872(2018).

    [247] H.-J. Jeon et al. Complex high-aspect-ratio metal nanostructures by secondary sputtering combined with block copolymer self-assembly. Adv. Mater., 28, 8439(2016).

    [248] H. S. Suh et al. Sub-10-nm patterning via directed self-assembly of block copolymer films with a vapour-phase deposited topcoat. Nat. Nanotechnol., 12, 575(2017).

    [249] K. Wu et al. Gold nanoparticles sliding on recyclable nanohoodoos—engineered for surface-enhanced Raman spectroscopy. Adv. Funct. Mater., 28, 1704818(2018).

    [250] J. W. Jeong et al. 3D cross-point plasmonic nanoarchitectures containing dense and regular hot spots for surface-enhanced Raman spectroscopy analysis. Adv. Mater., 28, 8695(2016).

    [251] I. Murataj et al. Hyperbolic metamaterials via hierarchical block copolymer nanostructures. Adv. Opt. Mater., 9, 2001933(2021).

    [252] C. Kilchoer et al. Hyperbolic optical metamaterials from shear-aligned block copolymer cylinder arrays. Adv. Photonics Res., 1, 2000037(2020).

    [253] S. Kim et al. Self-assembled pagoda-like nanostructure-induced vertically stacked split-ring resonators for polarization-sensitive dichroic responses. Nano Converg., 9, 40(2022).

    [254] L. Yang et al. Intrinsically breathable and flexible NO2 gas sensors produced by laser direct writing of self-assembled block copolymers. ACS Appl. Mater. Interfaces, 14, 17818(2022).

    [255] T. Yun et al. 2D metal chalcogenide nanopatterns by block copolymer lithography. Adv. Funct. Mater., 28, 1804508(2018).

    [256] J. Frascaroli et al. Resistive switching in high-density nanodevices fabricated by block copolymer self-assembly. ACS Nano, 9, 2518(2015).

    [257] C.-C. Hung et al. Conception of stretchable resistive memory devices based on nanostructure-controlled carbohydrate-block-polyisoprene block copolymers. Adv. Funct. Mater., 27, 1606161(2017).

    [258] K. H. Ku et al. Multicolor emission of hybrid block copolymer–quantum dot microspheres by controlled spatial isolation of quantum dots. Small, 9, 2667(2013).

    [259] M. Bugakov et al. Hybrid fluorescent liquid crystalline composites: directed assembly of quantum dots in liquid crystalline block copolymer matrices. RSC Adv., 10, 15264(2020).

    [260] H. M. Jin et al. Ultralarge area sub-10 nm plasmonic nanogap array by block copolymer self-assembly for reliable high-sensitivity SERS. ACS Appl. Mater. Interfaces, 10, 44660(2018).

    [261] H. Lim et al. Synthesis of uniformly sized mesoporous silver films and their SERS application. J. Phys. Chem. C, 124, 23730(2020).

    [262] Y.-C. Lu et al. Fabrication of gyroid-structured metal/semiconductor nanoscaffolds with ultrasensitive SERS detection via block copolymer templating. Adv. Opt. Mater., 11, 2202280.

    [263] Y. L. Lin et al. Reproducible and bendable SERS substrates with tailored wettability using block copolymers and anodic aluminum oxide templates. Macromol. Rapid Commun., 41, 2000088(2020).

    [264] R. H. Siddique et al. Scalable and controlled self-assembly of aluminum-based random plasmonic metasurfaces. Light Sci. Appl., 6, e17015(2017).

    [265] C. Cummins et al. An ultra-thin near-perfect absorber via block copolymer engineered metasurfaces. J. Colloid Interface Sci., 609, 375(2022).

    [266] W. Banerjee. Challenges and applications of emerging nonvolatile memory devices. Electronics, 9, 1029(2020).

    [267] N.-G. Kang et al. Structural and electrical characterization of a block copolymer-based unipolar nonvolatile memory device. Adv. Mater., 24, 385(2012).

    [268] T. W. Park, W. I. Park. Switching-modulated phase change memory realized by Si-containing block copolymers. Small, 17, 2105078(2021).

    [269] O. Auciello, D. M. Aslam. Review on advances in microcrystalline, nanocrystalline and ultrananocrystalline diamond films-based micro/nano-electromechanical systems technologies. J. Mater. Sci., 56, 7171(2021).

    [270] J. Zhu et al. Development trends and perspectives of future sensors and MEMS/NEMS. Micromachines, 11, 7(2020).

    [271] Z. Ren et al. Leveraging of MEMS technologies for optical metamaterials applications. Adv. Opt. Mater., 8, 1900653(2020).

    [272] Q. Wang et al. Wearable multifunctional piezoelectric MEMS device for motion monitoring, health warning, and earphone. Nano Energy, 89, 106324(2021).

    [273] R.-J. Xu, Y.-S. Lin. Actively MEMS-based tunable metamaterials for advanced and emerging applications. Electronics, 11, 243(2022).

    [274] H. Zhang et al. Employing a MEMS plasma switch for conditioning high-voltage kinetic energy harvesters. Nat. Commun., 11, 3221(2020).

    [275] M. T. Bodduluri et al. Fully integrated high-performance MEMS energy harvester for mechanical and contactless magnetic excitation in resonance and at low frequencies. Micromachines, 13, 863(2022).

    [276] M. Miyata et al. Scalable direct printing of visible-light metasurfaces composed of an industrial ZrO2-composite imprint material. Opt. Mater. Express, 12, 4169(2022).

    [277] Y. Li et al. A high-efficient and low-consumption nanoimprint method to prepare large-area and high-quality Nafion array for the ordered MEA of fuel cell. Chem. Eng. J., 451, 138722(2023).

    [278] M. A. Badshah et al. Glass nanoimprinted plasmonic nanostructure for high power laser stable surface-enhanced Raman spectroscopy substrate. Appl. Surf. Sci., 542, 148587(2021).

    [279] R. Zhao et al. A fast and cost-effective transfer printing of liquid metal inks for three-dimensional wiring in flexible electronics. ACS Appl. Mater. Interfaces, 12, 36723(2020).

    [280] C. M. Went et al. A new metal transfer process for van der Waals contacts to vertical Schottky-junction transition metal dichalcogenide photovoltaics. Sci. Adv., 5, eaax6061(2019).

    [281] G. Liu et al. Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials. Nat. Electron., 5, 275(2022).

    [282] Z. Li et al. Mass transfer printing of metal-halide perovskite films and nanostructures. Adv. Mater., 34, 2203529(2022).

    [283] H. Lee et al. Aligned proton transport highway of hierarchically structured proton-exchange membranes constructed via capillary force lithography. ACS Appl. Energy Mater., 5, 6256(2022).

    [284] Y. Park et al. Large-area single-crystal organic patterned thin films by vertically confined lateral crystal growth via capillary force lithography. Appl. Surf. Sci., 494, 1023(2019).

    [285] S. Jang et al. Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells. Nano Energy, 22, 499(2016).

    [286] M. Mayer et al. Aqueous gold overgrowth of silver nanoparticles: merging the plasmonic properties of silver with the functionality of gold. Angew. Chem. Int. Ed., 56, 15866(2017).

    [287] G. E. Akinoglu et al. Block copolymer derived vertically coupled plasmonic arrays for surface-enhanced Raman spectroscopy. ACS Appl. Mater. Interfaces, 12, 23410(2020).

    Hyunjung Kang, Dohyeon Lee, Younghwan Yang, Dong Kyo Oh, Junhwa Seong, Jaekyung Kim, Nara Jeon, Dohyun Kang, Junsuk Rho. Emerging low-cost, large-scale photonic platforms with soft lithography and self-assembly[J]. Photonics Insights, 2023, 2(2): R04
    Download Citation