• Chinese Journal of Lasers
  • Vol. 45, Issue 2, 207022 (2018)
Chen Yan1、2, Li Zhongliang1、2, Nan Nan1, Bu Yang1、2, Lu Yu1、2, Song Siyu1、2, and Wang Xiangzhao1、2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/CJL201845.0207022 Cite this Article Set citation alerts
    Chen Yan, Li Zhongliang, Nan Nan, Bu Yang, Lu Yu, Song Siyu, Wang Xiangzhao. Wavelength Misalignment Analysis and Spectral Calibration for Fourier Domain Polarization-Sensitive Optical Coherence Tomography[J]. Chinese Journal of Lasers, 2018, 45(2): 207022 Copy Citation Text show less
    References

    [1] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [2] He Q Y, Li Z L, Wang X Z et al. Automated retinal layer segmentation based on optical coherence tomographic images[J]. Acta Optica Sinica, 36, 1011003(2016).

    [3] Wang X, Li Z L, Nan N et al. A method to improve sensitivity of swept source optical coherence tomography system[J]. Chinese Journal of Lasers, 44, 0807002(2017).

    [4] Hee M R, Huang D, Swanson E A et al. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging[J]. Journal of the Optical Society of America B, 9, 903-908(1992). http://www.opticsinfobase.org/abstract.cfm?uri=josab-9-6-903

    [5] Roberts P, Sugita M, Deák G et al. Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT[J]. Investigative Ophthalmology & Visual Science, 57, 1699-1705(2016). http://www.ncbi.nlm.nih.gov/pubmed/27064389

    [6] Sakai S, Yamanari M, Lim Y et al. In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography[J]. Biomedical Optics Express, 2, 2623-2631(2011). http://pubmedcentralcanada.ca/pmcc/articles/PMC3184871/

    [7] Lee R C, Kang H, Darling C L et al. Automated assessment of the remineralization of artificial enamel lesions with polarization-sensitive optical coherence tomography[J]. Biomedical Optics Express, 5, 2950-2962(2014). http://pubmedcentralcanada.ca/pmcc/articles/PMC4230881/

    [8] South F A, Chaney E J, Marjanovic M et al. Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography[J]. Biomedical Optics Express, 5, 3417-3426(2014). http://pubmedcentralcanada.ca/pmcc/articles/PMC4206312/

    [9] Kiseleva E, Kirillin M, Feldchtein F et al. Differential diagnosis of human bladder mucosa pathologies in vivo with cross-polarization optical coherence tomography[J]. Biomedical Optics Express, 6, 1464-1476(2015). http://www.opticsinfobase.org/boe/abstract.cfm?uri=boe-6-4-1464

    [10] Wiesauer K, Pircher M, Goetzinger E et al. Transversal ultrahigh-resolution polarization-sensitive optical coherence tomography for strain mapping in materials[J]. Optics Express, 14, 5945-5953(2006). http://www.opticsinfobase.org/oe/abstract.cfm?id=90547

    [11] Stifter D, Leiss-Holzinger E, Major Z et al. Dynamic optical studies in materials testing with spectral-domain polarization-sensitive optical coherence tomography[J]. Optics Express, 18, 25712-25725(2010). http://europepmc.org/abstract/MED/21164917

    [12] Fercher A F, Hitzenberger C K, Kamp G et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 117, 43-48(1995). http://www.sciencedirect.com/science/article/pii/003040189500119S

    [13] Baumann B. Polarization sensitive optical coherence tomography: a review of technology and applications[J]. Applied Sciences, 7, 474(2017). http://www.researchgate.net/publication/316724229_Polarization_Sensitive_Optical_Coherence_Tomography_A_Review_of_Technology_and_Applications

    [14] Park B H, Pierce M C, Cense B et al. Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm[J]. Optics Express, 13, 3931-3944(2005). http://www.opticsinfobase.org/abstract.cfm?uri=oe-13-11-3931

    [15] Mujat M, Park B H, Cense B et al. Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination[J]. Journal of Biomedical Optics, 12, 041205(2007). http://onlinelibrary.wiley.com/resolve/reference/PMED?id=17867794

    [16] Götzinger E, Pircher M, Hitzenberger C K. High speed spectral domain polarization sensitive optical coherence tomography of the human retina[J]. Optics Express, 13, 10217-10229(2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT02000011000003000125000001&idtype=cvips&gifs=Yes

    [17] Sugiyama S, Hong Y J, Kasaragod D et al. Quantitative polarization and flow evaluation of choroid and sclera by multifunctional Jones matrix optical coherence tomography[C]. SPIE, 9693, 96930M(2016).

    [18] Wojtkowski M, Leitgeb R, Kowalczyk A et al. In vivo human retinal imaging by Fourier domain optical coherence tomography[J]. Journal of Biomedical Optics, 7, 457-463(2002). http://www.ncbi.nlm.nih.gov/pubmed/12175297

    [19] Baumann B, Götzinger E, Pircher M et al. Single camera based spectral domain polarization sensitive optical coherence tomography[J]. Optics Express, 15, 1054-1063(2007). http://europepmc.org/abstract/MED/19532333

    [20] Chen Y, Wang X, Li Z et al. Full-range Fourier domain polarization-sensitive optical coherence tomography using sinusoidal phase modulation[C]. SPIE, 9230, 92301S(2014).

    [21] Lurie K L, Moritz T J, Ellerbee A K. Design considerations for polarization-sensitive optical coherence tomography with a single input polarization state[J]. Biomedical Optics Express, 3, 2273-2287(2012). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3447567/

    Chen Yan, Li Zhongliang, Nan Nan, Bu Yang, Lu Yu, Song Siyu, Wang Xiangzhao. Wavelength Misalignment Analysis and Spectral Calibration for Fourier Domain Polarization-Sensitive Optical Coherence Tomography[J]. Chinese Journal of Lasers, 2018, 45(2): 207022
    Download Citation