• Photonics Research
  • Vol. 6, Issue 4, 307 (2018)
Mengxia Wang1、†, Fukun Ma1、†, Zhengping Wang1、*, Dawei Hu2, Xinguang Xu1, and Xiaopeng Hao1、3
Author Affiliations
  • 1State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 2Research Institute of Science and Technology, Shandong University, Jinan 250100, China
  • 3e-mail: xphao@sdu.edu.cn
  • show less
    DOI: 10.1364/PRJ.6.000307 Cite this Article Set citation alerts
    Mengxia Wang, Fukun Ma, Zhengping Wang, Dawei Hu, Xinguang Xu, Xiaopeng Hao. Graphitic carbon nitride, a saturable absorber material for the visible waveband[J]. Photonics Research, 2018, 6(4): 307 Copy Citation Text show less
    References

    [1] E. McCann. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B, 74, 161403(2006).

    [2] K. S. Novoselov, A. K. Geim, S. V. Morozov. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197-200(2005).

    [3] Q. Bao, H. Zhang, B. Wang. Broadband graphene polarizer. Nat. Photonics, 5, 411-415(2011).

    [4] J. E. Moore. The birth of topological insulators. Nature, 464, 194-198(2010).

    [5] Q. H. Wang, K. Kalantar-Zadeh, A. Kis. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 7, 699-712(2012).

    [6] G. Zhao, S. Han, A. Wang. ‘Chemical weathering’ exfoliation of atom-thick transition metal dichalcogenides and their ultrafast saturable absorption properties. Adv. Funct. Mater., 25, 5292-5299(2015).

    [7] J. Hou, G. Zhao, Y. Wu. Femtosecond solid-state laser based on tungsten disulfide saturable absorber. Opt. Express, 23, 27292-27298(2015).

    [8] Y. Chen, G. Jiang, S. Chen. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express, 23, 12823-12833(2015).

    [9] Z. Zheng, C. Zhao, S. Lu. Microwave and optical saturable absorption in graphene. Opt. Express, 20, 23201-23214(2012).

    [10] M. Feng, H. Zhan, Y. Chen. Nonlinear optical and optical limiting properties of graphene families. Appl. Phys. Lett., 96, 033107(2010).

    [11] Q. Ouyang, K. Zhang, W. Chen. Nonlinear absorption and nonlinear refraction in a chemical vapor deposition-grown, ultrathin hexagonal boron nitride film. Opt. Lett., 41, 1368-1371(2016).

    [12] Y. Xie, B. Zhang, S. Wang. Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717  nm. Adv. Mater., 29, 1605972(2017).

    [13] X. Wang, K. Maeda, A. Thomas. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater., 8, 76-80(2009).

    [14] S. Cao, J. Low, J. Yu. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater., 27, 2150-2176(2015).

    [15] J. Liu, Y. Liu, N. Liu. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 347, 970-974(2015).

    [16] J. Duan, S. Chen, M. Jaroniec. Porous C3N4 nanolayers@ N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano, 9, 931-940(2015).

    [17] X. Gao, S. Li, T. Li. g-C3N4 as a saturable absorber for the passively Q-switched Nd:LLF laser at 1.3  μm. Photon. Res., 5, 33-36(2017).

    [18] Y. Zhou, M. Zhao, S. Wang. Developing carbon-nitride nanosheets for mode-locking ytterbium fiber lasers. Opt. Lett., 41, 1221-1224(2016).

    [19] M. Fan, T. Li, G. Li. Graphitic C3N4 as a new saturable absorber for the mid-infrared spectral range. Opt. Lett., 42, 286-289(2017).

    [20] M. Fan, T. Li, G. Li. Passively Q-switched Ho, Pr:LiLuF4 laser with graphitic carbon nitride nanosheet film. Opt. Express, 25, 12796-12803(2017).

    [21] K. Sridharan, T. Kuriakose, R. Philip. Transition metal (Fe, Co and Ni) oxide nanoparticles grafted graphitic carbon nitrides as efficient optical limiters and recyclable photocatalysts. Appl. Surf. Sci., 308, 139-147(2014).

    [22] K. Sridharan, P. Sreekanth, T. J. Park. Nonlinear optical investigations in nine-atom silver quantum clusters and graphitic carbon nitride nanosheets. J. Phys. Chem. C, 119, 16314-16320(2015).

    [23] C. Kränkel, D. T. Marzahl, F. Moglia. Out of the blue: semiconductor laserpumped visible rare-earth doped lasers. Laser Photon. Rev., 10, 548-568(2016).

    [24] S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. Di Lieto, M. Tonelli, T. Sum, H. Zhang, Q. Xiong. Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers. Appl. Phys. Lett., 107, 161103(2015).

    [25] Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, J. Wang. Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range. Opt. Lett., 42, 547-550(2017).

    [26] S. Luo, X. Yan, B. Xu, L. Xiao, H. Xu, Z. Cai, J. Weng. Few-layer Bi2Se3-based passively Q-switched Pr:YLF visible lasers. Opt. Commun., 406, 61-65(2018).

    [27] D. Wu, J. Peng, Z. Cai, J. Weng, Z. Luo, N. Chen, H. Xu. Gold nanoparticles as a saturable absorber for visible 635  nm Q-switched pulse generation. Opt. Express, 23, 24071-24076(2015).

    [28] H. Lin, W. Li, J. Lan, X. Guan, H. Xu, Z. Cai. All-fiber passively Q-switched 604  nm praseodymium laser with a Bi2Se3 saturable absorber. Appl. Opt., 56, 802-805(2017).

    [29] P. Niu, L. Zhang, G. Liu. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater., 22, 4763-4770(2012).

    [30] Q. Huang, J. Yu, S. Cao. Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4. Appl. Surf. Sci., 358, 350-355(2015).

    [31] S. Hu, L. Ma, J. You. Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus. Appl. Surf. Sci., 311, 164-171(2014).

    [32] S. Tonda, S. Kumar, S. Kandula, V. Shanker. Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. J. Mater. Chem. A, 2, 6772-6780(2014).

    [33] S. Yan, Z. Li, Z. Zou. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir, 25, 10397-10401(2009).

    [34] J. Ran, T. Ma, G. Gao, X. Du, S. Qiao. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci., 8, 3708-3717(2015).

    [35] H. Lan, L. Li, X. An, F. Liu, C. Chen, H. Liu, J. Qu. Microstructure of carbon nitride affecting synergetic photocatalytic activity: hydrogen bonds vs. structural defects. Appl. Catal. B, 204, 49-57(2017).

    [36] M. Sheik-Bahae, A. A. Said, T. H. Wei. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron., 26, 760-769(1990).

    [37] X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc., 135, 18-21(2012).

    [38] C. Li, J. Si, M. Yang. Excited-state nonlinear absorption in multi-energy-level molecular systems. Phys. Rev. A, 51, 569-575(1995).

    [39] X. Deng, X. Zhang, S. Liu, C. Li. The theoretical analysis of critical conditions for several nonlinear absorptions. Acta Photon. Sin., 27, 1077-1090(1998).

    [40] N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, S. Couris. Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids. J. Phys. Chem. C, 117, 6842-6850(2013).

    [41] F. Zhang, Z. Wu, Z. Wang, D. Wang, S. Wang, X. Xu. Strong optical limiting behavior discovered in black phosphorus. RSC Adv., 6, 20027-20033(2016).

    [42] K. Zhou, M. Zhao, M. Chang, Q. Wang, X. Wu, Y. Song, H. Zhang. Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets. Small, 11, 694-701(2015).

    [43] F. Zhang, Z. Wang, D. Wang, Z. Wu, S. Wang, X. Xu. Nonlinear optical effects in nitrogen-doped graphene. RSC Adv., 6, 3526-3531(2016).

    [44] Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, J. Tian. Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes. Appl. Phys. Lett., 94, 021902(2009).

    [45] A. B. Bourlinos, A. Bakandritsos, N. Liaros, S. Couris, K. Safarova, M. Otyepka, R. Zbořil. Water dispersible functionalized graphene fluoride with significant nonlinear optical response. Chem. Phys. Lett., 543, 101-105(2012).

    [46] F. Ma, M. Wang, Y. Shao. Thermal substitution for preparing ternary BCN nanosheets with enhanced and controllable nonlinear optical performance. J. Mater. Chem. C, 5, 2559-2565(2017).

    [47] U. Keller. Recent developments in compact ultrafast lasers. Nature, 424, 831-838(2003).

    [48] Z. Chen, Q. Zhang, Y. Luo. Determining the charge-transfer direction in a p-n heterojunction BiOCl/g-C3N4 photocatalyst by ultrafast spectroscopy. ChemPhotoChem, 1, 350-354(2017).

    [49] J. Wang, Y. Hernandez, M. Lotya. Broadband nonlinear optical response of graphene dispersions. Adv. Mater., 21, 2430-2435(2009).

    [50] G. Yang, W. Wang, L. Yan. Z-scan determination of the large third-order optical nonlinearity of Rh: BaTiO3 thin films deposited on MgO substrates. Opt. Commun., 209, 445-449(2002).

    CLP Journals

    [1] Xinlin Lü, Yujie Peng, Wenyu Wang, Yuanan Zhao, Xiangyu Zhu, Yuxin Leng. High-energy, high-repetition-rate ultraviolet pulses from an efficiency-enhanced, frequency-tripled laser[J]. High Power Laser Science and Engineering, 2021, 9(3): 03000e38

    Mengxia Wang, Fukun Ma, Zhengping Wang, Dawei Hu, Xinguang Xu, Xiaopeng Hao. Graphitic carbon nitride, a saturable absorber material for the visible waveband[J]. Photonics Research, 2018, 6(4): 307
    Download Citation