• Photonics Research
  • Vol. 6, Issue 4, 307 (2018)
Mengxia Wang1、†, Fukun Ma1、†, Zhengping Wang1、*, Dawei Hu2, Xinguang Xu1, and Xiaopeng Hao1、3
Author Affiliations
  • 1State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 2Research Institute of Science and Technology, Shandong University, Jinan 250100, China
  • 3e-mail: xphao@sdu.edu.cn
  • show less
    DOI: 10.1364/PRJ.6.000307 Cite this Article Set citation alerts
    Mengxia Wang, Fukun Ma, Zhengping Wang, Dawei Hu, Xinguang Xu, Xiaopeng Hao. Graphitic carbon nitride, a saturable absorber material for the visible waveband[J]. Photonics Research, 2018, 6(4): 307 Copy Citation Text show less
    Photographs of (a) g-C3N4 powder and (b) prepared g-C3N4 dispersions.
    Fig. 1. Photographs of (a) g-C3N4 powder and (b) prepared g-C3N4 dispersions.
    (a) AFM image and (b) corresponding height profile of prepared g-C3N4 nanosheets.
    Fig. 2. (a) AFM image and (b) corresponding height profile of prepared g-C3N4 nanosheets.
    XRD pattern of g-C3N4 nanosheets.
    Fig. 3. XRD pattern of g-C3N4 nanosheets.
    Raman spectrum of g-C3N4 powder.
    Fig. 4. Raman spectrum of g-C3N4 powder.
    Transmission characteristic of g-C3N4. (a) UV–near infrared spectrum from 250 to 1750 nm. (b) FTIR spectrum from 2.5 to 15.4 μm (4000−650 cm−1).
    Fig. 5. Transmission characteristic of g-C3N4. (a) UV–near infrared spectrum from 250 to 1750 nm. (b) FTIR spectrum from 2.5 to 15.4 μm (4000650  cm1).
    Schematic of the Z-scan experimental setup.
    Fig. 6. Schematic of the Z-scan experimental setup.
    OA Z-scan results of g-C3N4 nanosheets. (a) Different g-C3N4 samples at 355 nm. (b) Different g-C3N4 samples at 532 nm. (c) Different g-C3N4 samples at 650 nm. (d) Different g-C3N4 samples at 1064 nm. (e) g-C3N4-2 sample at different 355 nm excitation intensities. (f) g-C3N4-2 sample at different 532 nm excitation intensities. (g) g-C3N4-2 sample at different 650 nm excitation intensities. (h) g-C3N4-2 sample at different 1064 nm excitation intensities.
    Fig. 7. OA Z-scan results of g-C3N4 nanosheets. (a) Different g-C3N4 samples at 355 nm. (b) Different g-C3N4 samples at 532 nm. (c) Different g-C3N4 samples at 650 nm. (d) Different g-C3N4 samples at 1064 nm. (e) g-C3N4-2 sample at different 355 nm excitation intensities. (f) g-C3N4-2 sample at different 532 nm excitation intensities. (g) g-C3N4-2 sample at different 650 nm excitation intensities. (h) g-C3N4-2 sample at different 1064 nm excitation intensities.
    CA/OA Z-scan results of different g-C3N4 samples at (a) 355 nm, (b) 532 nm, (c) 650 nm, and (d) 1064 nm.
    Fig. 8. CA/OA Z-scan results of different g-C3N4 samples at (a) 355 nm, (b) 532 nm, (c) 650 nm, and (d) 1064 nm.
    Wavelength/nmIs/GW·cm2β/cm·GW1n2  /cm2·W1Imχ(3)/esuReχ(3)/esuFOM/m4·(sW)1
    3554.6−2.050.87×10154.00×10120.62×10132.19×1022
    53211.4−0.341.42×10156.62×10131.02×10135.44×1023
    650185−0.110.40×10154.03×10130.27×10131.69×1023
    106460.3−0.060.34×10152.20×10130.23×10131.51×1023
    Table 1. Nonlinear Optical Properties of g-C3N4-2 Sample at Different Visible Wavelengths
    SampleLaser Pulse Duration/psI0/GW·cm2Main NLO Response/nmβ/cm·GW1Reference
    g-C3N4-23020–55SA−0.34This work
    Graphene3012.8RSA0.4[43]
    Graphene oxide350–34RSA2.2[44]
    350–30RSA2.5[40]
    3520RSA2[45]
    BP300.114RSA16[41]
    MoS2192.1RSA−0.0003–0.5[42]
    BCN3594RSA0.08–0.106[46]
    Carbon nanotubes3522RSA0–1[44]
    Table 2. Nonlinear Absorption Properties of g-C3N4-2 Sample and Several Representative Nanomaterials at Visible Wavelength of 532  nm
    Mengxia Wang, Fukun Ma, Zhengping Wang, Dawei Hu, Xinguang Xu, Xiaopeng Hao. Graphitic carbon nitride, a saturable absorber material for the visible waveband[J]. Photonics Research, 2018, 6(4): 307
    Download Citation