• Photonics Research
  • Vol. 9, Issue 9, 1650 (2021)
Rui Feng1,2, Badreddine Ratni3, Jianjia Yi4,6, Hailin Zhang1..., André de Lustrac2,5 and Shah Nawaz Burokur3,*|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China
  • 2Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
  • 3LEME, UPL, Univ Paris Nanterre, F92410 Ville d’Avray, France
  • 4School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an 710049, China
  • 5UPL, Univ Paris Nanterre, F92410 Ville d’Avray, France
  • 6e-mail: jianjia.yi@xjtu.edu.cn
  • show less
    DOI: 10.1364/PRJ.428853 Cite this Article Set citation alerts
    Rui Feng, Badreddine Ratni, Jianjia Yi, Hailin Zhang, André de Lustrac, Shah Nawaz Burokur, "Versatile metasurface platform for electromagnetic wave tailoring," Photonics Res. 9, 1650 (2021) Copy Citation Text show less
    References

    [1] B. Ratni, A. de Lustrac, G.-P. Piau, S. N. Burokur. Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface. Appl. Phys. Lett., 111, 214101(2017).

    [2] J. Xu, R. Li, J. Qin, S. Wang, T. Han. Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface. Opt. Express, 26, 20913-20919(2018).

    [3] X. Huang, H. Yang, D. Zhang, Y. Luo. Ultrathin dual-band metasurface polarization converter. IEEE Trans. Antennas Propag., 67, 4636-4641(2019).

    [4] Y. Qi, B. Zhang, C. Liu, X. Deng. Ultra-broadband polarization conversion meta-surface and its application in polarization converter and RCS reduction. IEEE Access, 8, 116675-116684(2020).

    [5] Q. Dai, Z. Li, L. Deng, N. Zhou, J. Deng, J. Tao, G. Zheng. Single-size nanostructured metasurface for dual-channel vortex beam generation. Opt. Lett., 45, 3773-3776(2020).

    [6] K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, Q. Wu. Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region. Opt. Express, 26, 1351-1360(2018).

    [7] B. Ratni, A. de Lustrac, G.-P. Piau, S. N. Burokur. Reconfigurable meta-mirror for wavefronts control: applications to microwave antennas. Opt. Express, 26, 2613-2624(2018).

    [8] X. Fu, Y. Fan, J. Wang, Y. Li, M. Feng, H. Chen, W. Wang, J. Zhang, S. Qu. Ultra-wideband microwave absorber via an integrated metasurface and impedance-matching lattice design. J. Phys. D, 52, 31LT01(2019).

    [9] Y. Kato, S. Morita, H. Shiomi, A. Sanada. Ultrathin perfect absorbers for normal incident waves using Dirac cone metasurfaces with critical external coupling. IEEE Microw. Wireless Compon. Lett., 30, 383-386(2020).

    [10] Y. Li, A. Li, T. Cui, D. F. Sievenpiper. Multiwavelength multiplexing hologram designed using impedance metasurfaces. IEEE Trans. Antennas Propag., 66, 6408-6413(2018).

    [11] Z. Wang, X. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. Gu, Q. Wu. Huygens metasurface holograms with the modulation of focal energy distribution. Adv. Opt. Mater., 6, 1800121(2018).

    [12] H. Ren, X. Fang, J. Jang, J. Bürger, J. Rho, S. A. Maier. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol., 15, 948-955(2020).

    [13] C. Guan, J. Liu, X. Ding, Z. Wang, K. Zhang, H. Li, M. Jin, S. N. Burokur, Q. Wu. Dual-polarized multiplexed meta-holograms utilizing coding metasurface. Nanophotonics, 9, 3605-3613(2020).

    [14] L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, T. J. Cui. Transmission-reflection integrated multifunctional coding metasurface for full-space controls of electromagnetic waves. Adv. Funct. Mater., 28, 1802205(2018).

    [15] T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, L. Zhou. High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces. Phys. Rev. Appl., 8, 034033(2017).

    [16] T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, L. Zhou. High-performance bifunctional metasurfaces in transmission and reflection geometries. Adv. Opt. Mater., 5, 1600506(2016).

    [17] Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. N. Burokur, P. Genevet. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces. Nat. Commun., 11, 4186(2020).

    [18] Y. Yuan, S. Sun, Y. Chen, K. Zhang, X. Ding, B. Ratni, Q. Wu, S. N. Burokur, C.-W. Qiu. A fully phase-modulated metasurface as an energy-controllable circular polarization router. Adv. Sci., 7, 2001437(2020).

    [19] M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, Y. S. Kivshar. Reversible thermal tuning of all-dielectric metasurfaces. Adv. Funct. Mater., 27, 1700580(2017).

    [20] X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, W. Zhang. Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface. Adv. Opt. Mater., 7, 1900175(2019).

    [21] K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, M. Rahmani. Reversible image contrast manipulation with thermally tunable dielectric metasurfaces. Small, 15, 1805142(2019).

    [22] M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, I. Brener. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat. Commun., 8, 17(2017).

    [23] X. G. Zhang, W. X. Tang, W. X. Jiang, G. D. Bai, J. Tang, L. Bai, C.-W. Qiu, T. J. Cui. Digital metasurfaces: light-controllable digital coding metasurfaces. Adv. Sci., 5, 1801028(2018).

    [24] Y. Zhou, X. Y. Hu, C. Li, H. Yang, Q. H. Gong. All-optical tunable dual Fano resonance in nonlinear metamaterials in optical communication range. J. Mod. Opt., 65, 1-7(2018).

    [25] J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, N. I. Zheludev. A magneto-electro-optical effect in a plasmonic nanowire material. Nat. Commun., 6, 7021(2015).

    [26] S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, A. Faraon. Highly tunable elastic dielectric metasurface lenses. Laser Photon. Rev., 10, 1002-1008(2016).

    [27] B. Gupta, S. Pandey, A. Nahata, T. Zhang, A. Nahata. Bistable physical geometries for terahertz plasmonic structures using shape memory alloys. Adv. Opt. Mater., 5, 1601008(2017).

    [28] H. S. Ee, R. Agarwal. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett., 16, 2818-2823(2016).

    [29] T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, D. Lopez. Dynamic metasurface lens based on MEMS technology. APL Photon., 3, 021302(2018).

    [30] E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, A. Faraon. MEMS-tunable dielectric metasurface lens. Nat. Commun., 9, 812(2018).

    [31] Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, H. A. Atwater. Gate-tunable conducting oxide metasurfaces. Nano Lett., 16, 5319-5325(2016).

    [32] J. Hwang, J. W. Roh. Electrically tunable two-dimensional metasurfaces at near-infrared wavelengths. Opt. Express, 25, 25071-25078(2017).

    [33] Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, L. Zhou. A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption. Adv. Opt. Mater., 8, 1901548(2020).

    [34] Y. Chai, H. Deng, Q. Xiong. A dynamically phase tunable metasurface for a broad bandwidth ultra-low radar cross section. IEEE Access, 8, 53006-53017(2020).

    [35] A. de Lustrac, B. Ratni, G.-P. Piau, Y. Duval, S. N. Burokur. Tri-state metasurface-based electromagnetic screen with switchable reflection, transmission, and absorption functionalities. ACS Appl. Electron. Mater., 3, 1184-1190(2021).

    [36] X. Bai, F. Kong, Y. Sun, G. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, W. Zhu. High-efficiency transmissive programmable metasurface for multimode OAM generation. Adv. Opt. Mater., 8, 2000570(2020).

    [37] X. Wan, M. Q. Qi, T. Y. Chen, T. J. Cui. Field-programmable beam reconfiguring based on digitally controlled coding metasurface. Sci. Rep., 6, 20663(2016).

    [38] T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng. Coding metamaterials, digital metamaterials and programming metamaterials. Light Sci. Appl., 3, e218(2014).

    [39] H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, S. Li. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci. Rep., 6, 35692(2016).

    [40] C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, X. Luo. Reconfigurable metasurface for multifunctional control of electromagnetic waves. Adv. Opt. Mater., 5, 1700485(2017).

    [41] R. Feng, B. Ratni, J. Yi, Z. Jiang, H. Zhang, A. de Lustrac, S. N. Burokur. Flexible manipulation of Bessel-like beams with a reconfigurable metasurface. Adv. Opt. Mater., 8, 2001084(2020).

    [42] H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, L. Zhou. Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch. Sci. Rep., 6, 38255(2016).

    [43] V. Popov, B. Ratni, S. N. Burokur, F. Boust. Non-local reconfigurable sparse metasurface: efficient near-field and far-field wavefront manipulations. Adv. Opt. Mater., 9, 202001316(2021).

    [44] B. Liu, Y. He, S.-W. Wong, Y. Li. Multifunctional vortex beam generation by a dynamic reflective metasurface. Adv. Opt. Mater., 9, 2001689(2020).

    [45] J. Y. Dai, J. Zhao, Q. Cheng, T. J. Cui. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light Sci. Appl., 7, 90(2018).

    [46] C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, H. Chen. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics, 14, 383-390(2020).

    [47] K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, C.-W. Qiu. A reconfigurable active Huygens’ metalens. Adv. Mater., 29, 1606422(2017).

    [48] Z. Wang, D. Liao, T. Zhang, T. Chen, Y. Ruan, B. Zheng. Metasurface-based focus-tunable mirror. Opt. Express, 27, 30332-30339(2019).

    [49] http://www.enprobe.de/products_FO-Antennas.htm. http://www.enprobe.de/products_FO-Antennas.htm

    [50] M. V. Berry, N. L. Balazs. Nonspreading wave packets. Am. J. Phys., 47, 264-267(1979).

    [51] R. Feng, B. Ratni, J. Yi, K. Zhang, X. Ding, H. Zhang, A. de Lustrac, S. N. Burokur. Versatile Airy-beam generation using a 1-bit coding programmable reflective metasurface. Phys. Rev. Appl., 14, 014081(2020).

    [52] E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, B. Lee. Compact generation of Airy beams with C-aperture metasurface. Adv. Opt. Mater., 5, 1601028(2017).

    [53] H. Li, W. Hao, X. Yin, S. Chen, L. Chen. Broadband generation of Airy beams with hyperbolic metamaterials. Adv. Opt. Mater., 7, 1900493(2019).

    [54] Q. Fan, D. Wang, P. Huo, Z. Zhang, Y. Liang, T. Xu. Autofocusing Airy beams generated by all-dielectric metasurface for visible light. Opt. Express, 25, 9285-9294(2017).

    [55] Z.-W. Miao, Z.-C. Hao, B.-B. Jin, Z. N. Chen. Low-profile 2-D THz Airy beam generator using the phase-only reflective metasurface. IEEE Trans. Antennas Propag., 68, 1503-1513(2019).

    [56] Y. Huang, J. Li, H.-X. Xu, H. Yu, Z. Yang, P. Yu, W. Hu, D. Inserra, G. Wen. Experimental demonstration of microwave two-dimensional Airy beam generation based on single-layer metasurface. IEEE Trans. Antennas Propag., 68, 7507-7516(2020).

    [57] C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, I. Akyildiz. A new wireless communication paradigm through software-controlled metasurfaces. IEEE Commun. Mag., 56, 162-169(2018).

    CLP Journals

    [1] Ying She, Chen Ji, Cheng Huang, Zuojun Zhang, Jianming Liao, Jiangyu Wang, Xiangang Luo, "Intelligent reconfigurable metasurface for self-adaptively electromagnetic functionality switching," Photonics Res. 10, 769 (2022)

    Rui Feng, Badreddine Ratni, Jianjia Yi, Hailin Zhang, André de Lustrac, Shah Nawaz Burokur, "Versatile metasurface platform for electromagnetic wave tailoring," Photonics Res. 9, 1650 (2021)
    Download Citation