• Photonics Research
  • Vol. 9, Issue 9, 1650 (2021)
Rui Feng1、2, Badreddine Ratni3, Jianjia Yi4、6, Hailin Zhang1, André de Lustrac2、5, and Shah Nawaz Burokur3、*
Author Affiliations
  • 1Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China
  • 2Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
  • 3LEME, UPL, Univ Paris Nanterre, F92410 Ville d’Avray, France
  • 4School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an 710049, China
  • 5UPL, Univ Paris Nanterre, F92410 Ville d’Avray, France
  • 6e-mail: jianjia.yi@xjtu.edu.cn
  • show less
    DOI: 10.1364/PRJ.428853 Cite this Article Set citation alerts
    Rui Feng, Badreddine Ratni, Jianjia Yi, Hailin Zhang, André de Lustrac, Shah Nawaz Burokur. Versatile metasurface platform for electromagnetic wave tailoring[J]. Photonics Research, 2021, 9(9): 1650 Copy Citation Text show less
    References

    [1] B. Ratni, A. de Lustrac, G.-P. Piau, S. N. Burokur. Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface. Appl. Phys. Lett., 111, 214101(2017).

    [2] J. Xu, R. Li, J. Qin, S. Wang, T. Han. Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface. Opt. Express, 26, 20913-20919(2018).

    [3] X. Huang, H. Yang, D. Zhang, Y. Luo. Ultrathin dual-band metasurface polarization converter. IEEE Trans. Antennas Propag., 67, 4636-4641(2019).

    [4] Y. Qi, B. Zhang, C. Liu, X. Deng. Ultra-broadband polarization conversion meta-surface and its application in polarization converter and RCS reduction. IEEE Access, 8, 116675-116684(2020).

    [5] Q. Dai, Z. Li, L. Deng, N. Zhou, J. Deng, J. Tao, G. Zheng. Single-size nanostructured metasurface for dual-channel vortex beam generation. Opt. Lett., 45, 3773-3776(2020).

    [6] K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, Q. Wu. Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region. Opt. Express, 26, 1351-1360(2018).

    [7] B. Ratni, A. de Lustrac, G.-P. Piau, S. N. Burokur. Reconfigurable meta-mirror for wavefronts control: applications to microwave antennas. Opt. Express, 26, 2613-2624(2018).

    [8] X. Fu, Y. Fan, J. Wang, Y. Li, M. Feng, H. Chen, W. Wang, J. Zhang, S. Qu. Ultra-wideband microwave absorber via an integrated metasurface and impedance-matching lattice design. J. Phys. D, 52, 31LT01(2019).

    [9] Y. Kato, S. Morita, H. Shiomi, A. Sanada. Ultrathin perfect absorbers for normal incident waves using Dirac cone metasurfaces with critical external coupling. IEEE Microw. Wireless Compon. Lett., 30, 383-386(2020).

    [10] Y. Li, A. Li, T. Cui, D. F. Sievenpiper. Multiwavelength multiplexing hologram designed using impedance metasurfaces. IEEE Trans. Antennas Propag., 66, 6408-6413(2018).

    [11] Z. Wang, X. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. Gu, Q. Wu. Huygens metasurface holograms with the modulation of focal energy distribution. Adv. Opt. Mater., 6, 1800121(2018).

    [12] H. Ren, X. Fang, J. Jang, J. Bürger, J. Rho, S. A. Maier. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol., 15, 948-955(2020).

    [13] C. Guan, J. Liu, X. Ding, Z. Wang, K. Zhang, H. Li, M. Jin, S. N. Burokur, Q. Wu. Dual-polarized multiplexed meta-holograms utilizing coding metasurface. Nanophotonics, 9, 3605-3613(2020).

    [14] L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen, T. J. Cui. Transmission-reflection integrated multifunctional coding metasurface for full-space controls of electromagnetic waves. Adv. Funct. Mater., 28, 1802205(2018).

    [15] T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, L. Zhou. High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces. Phys. Rev. Appl., 8, 034033(2017).

    [16] T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, L. Zhou. High-performance bifunctional metasurfaces in transmission and reflection geometries. Adv. Opt. Mater., 5, 1600506(2016).

    [17] Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. N. Burokur, P. Genevet. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces. Nat. Commun., 11, 4186(2020).

    [18] Y. Yuan, S. Sun, Y. Chen, K. Zhang, X. Ding, B. Ratni, Q. Wu, S. N. Burokur, C.-W. Qiu. A fully phase-modulated metasurface as an energy-controllable circular polarization router. Adv. Sci., 7, 2001437(2020).

    [19] M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, Y. S. Kivshar. Reversible thermal tuning of all-dielectric metasurfaces. Adv. Funct. Mater., 27, 1700580(2017).

    [20] X. Liu, Q. Wang, X. Zhang, H. Li, Q. Xu, Y. Xu, X. Chen, S. Li, M. Liu, Z. Tian, C. Zhang, C. Zou, J. Han, W. Zhang. Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface. Adv. Opt. Mater., 7, 1900175(2019).

    [21] K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, M. Rahmani. Reversible image contrast manipulation with thermally tunable dielectric metasurfaces. Small, 15, 1805142(2019).

    [22] M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, I. Brener. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat. Commun., 8, 17(2017).

    [23] X. G. Zhang, W. X. Tang, W. X. Jiang, G. D. Bai, J. Tang, L. Bai, C.-W. Qiu, T. J. Cui. Digital metasurfaces: light-controllable digital coding metasurfaces. Adv. Sci., 5, 1801028(2018).

    [24] Y. Zhou, X. Y. Hu, C. Li, H. Yang, Q. H. Gong. All-optical tunable dual Fano resonance in nonlinear metamaterials in optical communication range. J. Mod. Opt., 65, 1-7(2018).

    [25] J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, N. I. Zheludev. A magneto-electro-optical effect in a plasmonic nanowire material. Nat. Commun., 6, 7021(2015).

    [26] S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, A. Faraon. Highly tunable elastic dielectric metasurface lenses. Laser Photon. Rev., 10, 1002-1008(2016).

    [27] B. Gupta, S. Pandey, A. Nahata, T. Zhang, A. Nahata. Bistable physical geometries for terahertz plasmonic structures using shape memory alloys. Adv. Opt. Mater., 5, 1601008(2017).

    [28] H. S. Ee, R. Agarwal. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett., 16, 2818-2823(2016).

    [29] T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, D. Lopez. Dynamic metasurface lens based on MEMS technology. APL Photon., 3, 021302(2018).

    [30] E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, A. Faraon. MEMS-tunable dielectric metasurface lens. Nat. Commun., 9, 812(2018).

    [31] Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, H. A. Atwater. Gate-tunable conducting oxide metasurfaces. Nano Lett., 16, 5319-5325(2016).

    [32] J. Hwang, J. W. Roh. Electrically tunable two-dimensional metasurfaces at near-infrared wavelengths. Opt. Express, 25, 25071-25078(2017).

    [33] Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, L. Zhou. A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption. Adv. Opt. Mater., 8, 1901548(2020).

    [34] Y. Chai, H. Deng, Q. Xiong. A dynamically phase tunable metasurface for a broad bandwidth ultra-low radar cross section. IEEE Access, 8, 53006-53017(2020).

    [35] A. de Lustrac, B. Ratni, G.-P. Piau, Y. Duval, S. N. Burokur. Tri-state metasurface-based electromagnetic screen with switchable reflection, transmission, and absorption functionalities. ACS Appl. Electron. Mater., 3, 1184-1190(2021).

    [36] X. Bai, F. Kong, Y. Sun, G. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, W. Zhu. High-efficiency transmissive programmable metasurface for multimode OAM generation. Adv. Opt. Mater., 8, 2000570(2020).

    [37] X. Wan, M. Q. Qi, T. Y. Chen, T. J. Cui. Field-programmable beam reconfiguring based on digitally controlled coding metasurface. Sci. Rep., 6, 20663(2016).

    [38] T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng. Coding metamaterials, digital metamaterials and programming metamaterials. Light Sci. Appl., 3, e218(2014).

    [39] H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, S. Li. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci. Rep., 6, 35692(2016).

    [40] C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, X. Luo. Reconfigurable metasurface for multifunctional control of electromagnetic waves. Adv. Opt. Mater., 5, 1700485(2017).

    [41] R. Feng, B. Ratni, J. Yi, Z. Jiang, H. Zhang, A. de Lustrac, S. N. Burokur. Flexible manipulation of Bessel-like beams with a reconfigurable metasurface. Adv. Opt. Mater., 8, 2001084(2020).

    [42] H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, L. Zhou. Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch. Sci. Rep., 6, 38255(2016).

    [43] V. Popov, B. Ratni, S. N. Burokur, F. Boust. Non-local reconfigurable sparse metasurface: efficient near-field and far-field wavefront manipulations. Adv. Opt. Mater., 9, 202001316(2021).

    [44] B. Liu, Y. He, S.-W. Wong, Y. Li. Multifunctional vortex beam generation by a dynamic reflective metasurface. Adv. Opt. Mater., 9, 2001689(2020).

    [45] J. Y. Dai, J. Zhao, Q. Cheng, T. J. Cui. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light Sci. Appl., 7, 90(2018).

    [46] C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, H. Chen. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics, 14, 383-390(2020).

    [47] K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, C.-W. Qiu. A reconfigurable active Huygens’ metalens. Adv. Mater., 29, 1606422(2017).

    [48] Z. Wang, D. Liao, T. Zhang, T. Chen, Y. Ruan, B. Zheng. Metasurface-based focus-tunable mirror. Opt. Express, 27, 30332-30339(2019).

    [49] http://www.enprobe.de/products_FO-Antennas.htm. http://www.enprobe.de/products_FO-Antennas.htm

    [50] M. V. Berry, N. L. Balazs. Nonspreading wave packets. Am. J. Phys., 47, 264-267(1979).

    [51] R. Feng, B. Ratni, J. Yi, K. Zhang, X. Ding, H. Zhang, A. de Lustrac, S. N. Burokur. Versatile Airy-beam generation using a 1-bit coding programmable reflective metasurface. Phys. Rev. Appl., 14, 014081(2020).

    [52] E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, B. Lee. Compact generation of Airy beams with C-aperture metasurface. Adv. Opt. Mater., 5, 1601028(2017).

    [53] H. Li, W. Hao, X. Yin, S. Chen, L. Chen. Broadband generation of Airy beams with hyperbolic metamaterials. Adv. Opt. Mater., 7, 1900493(2019).

    [54] Q. Fan, D. Wang, P. Huo, Z. Zhang, Y. Liang, T. Xu. Autofocusing Airy beams generated by all-dielectric metasurface for visible light. Opt. Express, 25, 9285-9294(2017).

    [55] Z.-W. Miao, Z.-C. Hao, B.-B. Jin, Z. N. Chen. Low-profile 2-D THz Airy beam generator using the phase-only reflective metasurface. IEEE Trans. Antennas Propag., 68, 1503-1513(2019).

    [56] Y. Huang, J. Li, H.-X. Xu, H. Yu, Z. Yang, P. Yu, W. Hu, D. Inserra, G. Wen. Experimental demonstration of microwave two-dimensional Airy beam generation based on single-layer metasurface. IEEE Trans. Antennas Propag., 68, 7507-7516(2020).

    [57] C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, I. Akyildiz. A new wireless communication paradigm through software-controlled metasurfaces. IEEE Commun. Mag., 56, 162-169(2018).

    CLP Journals

    [1] Ying She, Chen Ji, Cheng Huang, Zuojun Zhang, Jianming Liao, Jiangyu Wang, Xiangang Luo. Intelligent reconfigurable metasurface for self-adaptively electromagnetic functionality switching[J]. Photonics Research, 2022, 10(3): 769

    Rui Feng, Badreddine Ratni, Jianjia Yi, Hailin Zhang, André de Lustrac, Shah Nawaz Burokur. Versatile metasurface platform for electromagnetic wave tailoring[J]. Photonics Research, 2021, 9(9): 1650
    Download Citation