• Infrared and Laser Engineering
  • Vol. 50, Issue 12, 20210738 (2021)
[in Chinese]1, [in Chinese]1、*, [in Chinese]2, and [in Chinese]1、2
Author Affiliations
  • 1School of Information Science and Engineering, Shandong University, Qingdao 266237, China
  • 2Key Laboratory of Laser & Infrared System, Ministry of Education, Shandong University, Qingdao 266237, China
  • show less
    DOI: 10.3788/IRLA20210738 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Development and application of mask modulated correlated imaging (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210738 Copy Citation Text show less
    References

    [1] R I Stantchev, X Yu, T Blu, et al. Real-time terahertz imaging with a single-pixel detector. Nature Communications, 11, 1-8(2020).

    [2] R I Stantchev, B Sun, S M Hornett, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Science Advances, 2, e1600190(2016).

    [3] C M Watts, D Shrekenhamer, J Montoya, et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nature Photonics, 8, 605-609(2014).

    [4] N Radwell, K J Mitchell, G M Gibson, et al. Single-pixel infrared and visible microscope. Optica, 1, 285-289(2014).

    [5] G M Gibson, B Sun, M P Edgar, et al. Real-time imaging of methane gas leaks using a single-pixel camera. Optics Express, 25, 2998-3005(2017).

    [6] D Pelliccia, A Rack, M Scheel, et al. Experimental X-ray ghost imaging. Physical Review Letters, 117, 113902(2016).

    [7] H Yu, R Lu, S Han, et al. Fourier-transform ghost imaging with hard X-rays. Physical Review Letters, 117, 113901(2016).

    [8] A X Zhang, Y H He, L A Wu, et al. Tabletop x-ray ghost imaging with ultra-low radiation. Optica, 5, 374-377(2018).

    [9] A Schori, S Shwartz. X-ray ghost imaging with a laboratory source. Optics Express, 25, 14822-14828(2017).

    [10] R I Khakimov, B M Henson, D K Shin, et al. Ghost imaging with atoms. Nature, 540, 100-103(2016).

    [11] S S Hodgman, W Bu, S B Mann, et al. Higher-order quantum ghost imaging with ultracold atoms. Physical Review Letters, 122, 233601(2019).

    [12] A M Kingston, G R Myers, D Pelliccia, et al. Neutron ghost imaging. Physical Review A, 101, 053844(2020).

    [13] Y H He, Y Y Huang, Z R Zeng, et al. Single- pixel imaging with neutrons. Science Bulletin, 66, 133-138(2021).

    [14] S Li, F Cropp, K Kabra, et al. Electron ghost imaging. Physical Review Letters, 121, 114801(2018).

    [15] A Trimeche, C Lopez, D Comparat, et al. Ion and electron ghost imaging. Physical Review Research, 2, 043295(2020).

    [16] W Jiang, J Jiao, Y Guo, et al. Single-pixel camera based on a spinning mask. Optics Letters, 46, 4859-4862(2021).

    [17] F Rousset, N Ducros, F Peyrin, et al. Time-resolved multispectral imaging based on an adaptive single-pixel camera. Optics Express, 26, 10550-10558(2018).

    [18] L Bian, J Suo, G Situ, et al. Multispectral imaging using a single bucket detector. Scientific Reports, 6, 1-7(2016).

    [19] Z Li, J Suo, X Hu, et al. Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation. Scientific Reports, 7, 41435(2017).

    [20] S Jin, W Hui, Y Wang, et al. Hyperspectral imaging using the single-pixel Fourier transform technique. Scientific Reports, 7, 45209(2017).

    [21] F Magalhães, F M Araújo, M Correia, et al. High-resolution hyperspectral single-pixel imaging system based on compressive sensing. Optical Engineering, 51, 071406(2012).

    [22] P Gattinger, J Kilgus, I Zorin, et al. Broadband near-infrared hyperspectral single pixel imaging for chemical characterization. Optics Express, 27, 12666-12672(2019).

    [23] B Sun, M P Edgar, R Bowman, et al. 3 D computational imaging with single-pixel detectors. Science, 340, 844-847(2013).

    [24] E Salvador-Balaguer, P Latorre-Carmona, C Chabert, et al. Low-cost single-pixel 3 D imaging by using an LED array. Optics Express, 26, 15623-15631(2018).

    [25] Z Zhang, J Zhong. Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels. Optics Letters, 41, 2497-2500(2016).

    [26] Z Zhang, S Jiao, M Yao, et al. Secured single-pixel broadcast imaging. Optics Express, 26, 14578-14591(2018).

    [27] W Chen, X Chen. Marked ghost imaging. Applied Physics Letters, 104, 251109(2014).

    [28] W Chen, X Chen. Ghost imaging for three-dimensional optical security. Applied Physics Letters, 103, 221106(2013).

    [29] Z Yang, L Zhao, X Zhao, et al. Lensless ghost imaging through the strongly scattering medium. Chinese Physics B, 25, 024202(2015).

    [30] F Li, M Zhao, Z Tian, et al. Compressive ghost imaging through scattering media with deep learning. Optics Express, 28, 17395-17408(2020).

    [31] R Dutta, S Manzanera, A Gambín-Regadera, et al. Single-pixel imaging of the retina through scattering media. Biomedical Optics Express, 10, 4159-4167(2019).

    [32] J Zhao, J Dai, B Braverman, et al. Compressive ultrafast pulse measurement via time-domain single-pixel imaging. Optica, 8, 1176-1185(2021).

    [33] Q Pian, R Yao, N Sinsuebphon, et al. Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging. Nature Photonics, 11, 411-414(2017).

    [34] K Ota, Y Hayasaki. Complex-amplitude single-pixel imaging. Optics Letters, 43, 3682-3685(2018).

    [35] Y Liu, J Suo, Y Zhang, et al. Single-pixel phase and fluorescence microscope. Optics Express, 26, 32451-32462(2018).

    [36] X Hu, H Zhang, Q Zhao, et al. Single-pixel phase imaging by Fourier spectrum sampling. Applied Physics Letters, 114, 051102(2019).

    [37] X Li, Y Sun, Y He, et al. Quantitative imaging for optical field via a single-pixel detector. Signal Processing, 108173(2021).

    [38] G Musarra, A Lyons, E Conca, et al. Non-line-of-sight three-dimensional imaging with a single-pixel camera. Physical Review Applied, 12, 011002(2019).

    [39] J Junek, K Žídek. Fluorescence lifetime imaging via spatio-temporal speckle patterns in a single-pixel camera configuration. Optics Express, 29, 5538-5551(2021).

    [40] R V Vinu, Z Chen, R K Singh, et al. Ghost diffraction holographic microscopy. Optica, 7, 1697-1704(2020).

    [41] T B Pittman, Y H Shih, D V Strekalov, et al. Optical imaging by means of two-photon quantum entanglement. Physical Review A, 52, R3429(1995).

    [42] R S Bennink, S J Bentley, R W Boyd. “Two-photon” coincidence imaging with a classical source. Physical Review Letters, 89, 113601(2002).

    [43] A Valencia, G Scarcelli, M D’Angelo, et al. Two-photon imaging with thermal light. Physical Review Letters, 94, 063601(2005).

    [44] J H Shapiro. Computational ghost imaging. Physical Review A, 78, 061802(2008).

    [45] G Futia, P Schlup, D G Winters, et al. Spatially-chirped modulation imaging of absorbtion and fluorescent objects on single-element optical detector. Optics Express, 19, 1626-1640(2011).

    [46] H Shen, L Gan, N Newman, et al. Spinning disk for compressive imaging. Optics Letters, 37, 46-48(2012).

    [47] Y Ma, J Grant, S Saha, et al. Terahertz single pixel imaging based on a Nipkow disk. Optics Letters, 37, 1484-1486(2012).

    [48] D J Higley, D G Winters, R A Bartels. Two-dimensional spatial-frequency-modulated imaging through parallel acquisition of line images. Optics Letters, 38, 1763-1765(2013).

    [49] D G Winters, R A Bartels. Two-dimensional single-pixel imaging by cascaded orthogonal line spatial modulation. Optics Letters, 40, 2774-2777(2015).

    [50] A Vallés, J He, S Ohno, et al. Broadband high-resolution terahertz single-pixel imaging. Optics Express, 28, 28868-28881(2020).

    [51] Y Hayasaki, R Sato. Single-pixel camera with hole-array disk. Optical Review, 1-6(2020).

    [52] E Hahamovich, S Monin, Y Hazan, et al. Single pixel imaging at megahertz switching rates via cyclic Hadamard masks. Nature Communications, 12, 1-6(2021).

    [53] D M Grant, D S Elson, D Schimpf, et al. Optically sectioned fluorescence lifetime imaging using a Nipkow disk microscope and a tunable ultrafast continuum excitation source. Optics Letters, 30, 3353-3355(2005).

    [54] S Yin, G Lu, J Zhang, et al. Kinoform-based nipkow disk for a confocal microscope. Applied Optics, 34, 5695-5698(1995).

    [55] M J E Golay. Multi-slit spectrometry. JOSA, 39, 437-444(1949).

    [56] M J E Golay. Static multislit spectrometry and its application to the panoramic display of infrared spectra. JOSA, 41, 468-472(1951).

    [57] R N Ibbett, D Aspinall, J F Grainger. Real-time multiplexing of dispersed spectra in any wavelength region. Applied Optics, 7, 1089-1093(1968).

    [58] J A Decker, M O Harwitt. Sequential encoding with multislit spectrometers. Applied Optics, 7, 2205-2209(1968).

    [59] P Gottlieb. A television scanning scheme for a detector-noise- limited system. IEEE Transactions on Information Theory, 14, 428-433(1968).

    [60] J A Decker. Hadamard –transform image scanning. Applied Optics, 9, 1392-1395(1970).

    [61] R D Swift, R B Wattson, J A Decker, et al. Hadamard transform imager and imaging spectrometer. Applied Optics, 15, 1595-1609(1976).

    [62] M Harwit. Spectrometric imager. Applied Optics, 10, 1415-1421(1971).

    [63] P S Moharir. Two-dimensional encoding masks for Hadamard spectrometric imager. IEEE Transactions on Electromagnetic Compatibility, 126-130(1974).

    [64] Brown R H, Twiss R Q. A Test of a New Type of Stellar Interferometer on Sirius[M]. Boston: Harvard University Press, 2013: 812.

    [65] Y Bromberg, O Katz, Y Silberberg. Ghost imaging with a single detector. Physical Review A, 79, 053840(2009).

    [66] Z H Xu, W Chen, J Penuelas, et al. 1000 fps computational ghost imaging using LED-based structured illumination. Optics Express, 26, 2427-2434(2018).

    [67] W Zhao, H Chen, Y Yuan, et al. Ultrahigh-speed color imaging with single-pixel detectors at low light level. Physical Review Applied, 12, 034049(2019).

    [68] W Jiang, X Li, X Peng, et al. Imaging high-speed moving targets with a single-pixel detector. Optics Express, 28, 7889-7897(2020).

    [69] S Ota, R Horisaki, Y Kawamura, et al. Ghost cytometry. Science, 360, 1246-1251(2018).

    [70] S Ma, Z Liu, C Wang, et al. Ghost imaging LiDAR via sparsity constraints using push-broom scanning. Optics Express, 27, 13219-13228(2019).

    [71] W L Chan, K Charan, D Takhar, et al. A single-pixel terahertz imaging system based on compressed sensing. Applied Physics Letters, 93, 121105(2008).

    [72] P Duan, Y Wang, D Xu, et al. Single pixel imaging with tunable terahertz parametric oscillator. Applied Optics, 55, 3670-3675(2016).

    [73] J Miao, P Charalambous, J Kirz, et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature, 400, 342-344(1999).

    [74] P Thibault, M Dierolf, A Menzel, et al. High-resolution scanning X-ray diffraction microscopy. Science, 321, 379-382(2008).

    [75] H N Chapman, A Barty, M J Bogan, et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Physics, 2, 839-843(2006).

    [76] Y Klein, A Schori, I P Dolbnya, et al. X-ray computational ghost imaging with single-pixel detector. Optics Express, 27, 3284-3293(2019).

    [77] Y H He, A X Zhang, M F Li, et al. High-resolution sub-sampling incoherent X-ray imaging with a single-pixel detector. APL Photonics, 5, 056102(2020).

    [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Development and application of mask modulated correlated imaging (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210738
    Download Citation