• Acta Optica Sinica
  • Vol. 38, Issue 3, 324001 (2018)
Liu Yao* and Chen Yuegang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/AOS201838.0324001 Cite this Article Set citation alerts
    Liu Yao, Chen Yuegang. Resonance of I-Shaped Metamaterials[J]. Acta Optica Sinica, 2018, 38(3): 324001 Copy Citation Text show less
    References

    [1] Ebbesen T W, Lezec H J, Ghaemi H F et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 391, 667-669(1998). http://www.nature.com/nature/journal/v391/n6668/abs/391667a0.html

    [2] Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: Review[J]. Sensors and Actuators B, 54, 3-15(1999). http://www.sciencedirect.com/science/article/pii/S0925400598003219

    [3] Lu Y Q, Cheng X Y, Xu M et al. Extraordinary transmission of light enhanced by exciting hybrid states of Tamm and surface plasmon polaritions in a single nano-slit[J]. Acta Physica Sinica, 65, 204207(2016).

    [4] Zhang G H, Chen Y G. New coupler for exciting symmetric and antisymmetric plasmon modes in double-wire transmission lines[J]. Acta Optica Sinica, 35, 1113003(2015).

    [5] Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. Philosophical Magazine, 18, 269-275(1902). http://www.tandfonline.com/doi/abs/10.1080/14786440209462857

    [6] Kretschmann E. The determination of the optical constant of metals by excitation of surface plasmons[J]. Zeitschrift Für Physik A Hadrons & Nuclei, 241, 313-324(1971). http://link.springer.com/article/10.1007/BF01395428

    [7] Fu K Y, Chen Y G. Focusing and beam splitting of metal sub-wavelength waveguide array[J]. Acta Optica Sinica, 31, 0523003(2011).

    [8] Chen Y G, Yang X. Design of multi-channel wavelength demultiplexer based on surface plasma resonant cavity[J]. Journal of Guizhou University(Natural Sciences Edition), 29, 12-16(2012).

    [9] Bog U, Huska K, Maerkle F et al. Design of plasmonic grating structures to wards optimum signal discrimination for biosensing applications[J]. Optics Express, 20, 11357-11369(2012). http://europepmc.org/abstract/MED/22565756

    [10] Li F H, Shan C S, Yang G F et al. Surface plasmon resonance spectroscopy and its applications for the studies on electrochemical processes[J]. Chinese Journal of Analytical Chemistry, 35, 754-759(2007).

    [11] Jing Q L, Du C G, Gao J C. New application of surface plasmon resonance-measurement of weak magnetic field[J]. Acta Physica Sinica, 62, 037302(2013). http://en.cnki.com.cn/Article_en/CJFDTotal-WLXB201303053.htm

    [12] Liu X F, Zhang X R, Lan G Q et al. Thermal index based on surface plasmon resonance[J]. Acta Optica Sinica, 36, 0524001(2016).

    [13] Zhu L, Wang Y, Xiong G et al. Design and absorption characteristics of broadband nano-metematerial solar absorber[J]. Acta Optica Sinica, 37, 0923001(2017).

    [14] Vafapour Z. Near infrared biosensor based on classical electromagnetically induced reflectance (Cl-EIR) in a planar complementary metamaterial[J]. Optics Communications, 387, 1-11(2017). http://www.sciencedirect.com/science/article/pii/S0030401816310033

    [15] Freise A. Optical metamaterials: Fundamentals and applications, by W. Cai and V. Shalaev[J]. Contemporary Physics, 53, 278-279(2012). http://www.tandfonline.com/doi/full/10.1080/00107514.2012.661780

    [16] Liang Q, Wang T, Lu Z et al. Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting[J]. Advanced Optical Materials, 1, 43-49(2013). http://onlinelibrary.wiley.com/doi/10.1002/adom.201200009/full

    [17] Hau L V, Harris S E, Dutton Z et al. Light speed reduction to 17 metres per second in an ultracold atomic gas[J]. Nature, 397, 594-598(1999). http://www.nature.com/uidfinder/10.1038/17561

    [18] Zhang L, Tassin P, Koschny T et al. Large group delay in a microwave metamaterial analog of electromagnetically induced transparency[J]. Applied Physics Letters, 97, 241904(2010). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5668932

    [19] Smith D R, Pendry J B. Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 305, 788-792(2004).

    [20] Zhang S, Park Y S, Li J et al. Negative refractive index in chiral metamaterials[J]. Physical Review Letters, 102, 023901(2009). http://www.ncbi.nlm.nih.gov/pubmed/19257274

    [21] Smith D R, Kroll N. Negative refractive index in left-handed materials[J]. Physical Review Letters, 85, 2933-2936(2000). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.85.2933

    [22] Liu N, Weiss T, Mesch M et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing[J]. Nano Letters, 10, 1103-1107(2010). http://pubs.acs.org/doi/abs/10.1021/nl902621d

    [23] Vafapour Z, Zakery A. New approach of plasmonically induced reflectance in a planar metamaterial for plasmonic sensing applications[J]. Plasmonics, 11, 609-618(2016). http://link.springer.com/article/10.1007/s11468-015-0077-1

    [24] Vafapour Z, Forouzeshfard M R. Disappearance of plasmonically induced reflectance by breaking symmetry in metamaterials[J]. Plasmonics, 12, 1331-1342(2017). http://link.springer.com/10.1007/s11468-016-0391-2

    [25] Qian J R. Coupled-mode theory and its application to fiber optics[J]. Acta Optica Sinica, 29, 1188-1192(2009).