• Photonic Sensors
  • Vol. 10, Issue 1, 67 (2020)
Md. Biplob HOSSAIN1、*, Md. Muztahidul ISLAM2, Lway Faisal ABDULRAZAK3, Md. Masud RANA4, Tarik Bin Abdul AKIB2, and Mehedi HASSAN2
Author Affiliations
  • 1Dept. of Electrical and Electronic Engineering, Jashore University of Science and Technology, Jashore-7408, Bangladesh
  • 2Dept. of Electrical and Electronic Engineering, Bangladesh Army University of Engineering and Technology, Natore-6431, Bangladesh
  • 3Dept. of Computer Science, Cihan University Slemani, Sulaimaniya-46001, Iraq
  • 4Dept. of Electrical and Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi-6402, Bangladesh
  • show less
    DOI: 10.1007/s13320-019-0556-7 Cite this Article
    Md. Biplob HOSSAIN, Md. Muztahidul ISLAM, Lway Faisal ABDULRAZAK, Md. Masud RANA, Tarik Bin Abdul AKIB, Mehedi HASSAN. Graphene-Coated Optical Fiber SPR Biosensor for BRCA1 and BRCA2 Breast Cancer Biomarker Detection: a Numerical Design-Based Analysis[J]. Photonic Sensors, 2020, 10(1): 67 Copy Citation Text show less
    References

    [1] D. A. Caporale and E. E. Swenson, “Two different BRCA2 mutations found in a multigenerational family with a history of breast, prostate, and lung cancers,” Advances in Genomics and Genetics, 2014, 2014(4): 87-94.

    [2] L. G. Carrascosa, A. Calle, and L. M. Lechuga, “Label-free detection of DNA mutations by SPR: application to the early detection of inherited breast cancer,” Analytical and Bioanalytical Chemistry, 2009, 393(4): 1173-1182.

    [3] M. B. Hossain, T. B. A. Akib, L. F. Abdulrazak, and M. M. Rana, “Numerical modeling of graphene-coated fiber optic surface plasmon resonance biosensor for BRCA1 and BRCA2 genetic breast cancer detection,” Optical Engineering, 2019, 58(3): 037104.

    [4] C. W. Lin and C. C. Chang, “Breast cancer detection using surface plasmon resonance-based biosensors,” Biosensors and Cancer, 2012, chapter 12: 229-247.

    [5] I. Godet and D. M. Gilkes, “BRCA1 and BRCA2 mutations and treatment strategies for breast cancer,” Integrative Cancer Science and Therapeutics, 2017, 4(1): 1–17.

    [6] Y. Li, A. W. Wark, H. J. Lee, and R. M. Corn, “Single-nucleotide polymorphism genotyping by nanoparticle-enhanced surface plasmon resonance imaging measurements of surface ligation reactions,” Analytical Chemistry, 2006, 78(9): 3158-3164.

    [7] M. B. Hossain and M. M. Rana, “Graphene coated high sensitive surface plasmon resonance biosensor for sensing DNA hybridization,” Sensor Letters, 2016, 14(2): 145-152.

    [8] A. K. Paul and A. K. Sarkar, “Dual-core photonic crystal fiber plasmonic refractive index sensor: a numerical analysis,” Photonic Sensors, 2019, 9(2): 151–161.

    [9] Y. Wang, S. Meng, Y. Liang, L. Li, and W. Peng, “Fiber-optic surface plasmon resonance sensor with multi-alternating metal layers for biological measurement,” Photonic Sensors, 2013, 1(3): 202–207.

    [10] A. K. Mishra, S. K. Mishra, and R. K. Verma, “Graphene and beyondgraphene MoS2: a new window in surface-plasmon-resonance-based fiber optic sensing,” The Journal of Physical Chemistry C, 2016, 120(5): 2893–2900.

    [11] L. Wu, J. Guo, H. Xu, X. Dai, and Y. Xiang, “Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes,” Photonics Research, 2016, 4(6): 262–266.

    [12] L. M. Wu, J. Guo, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by MoS2-graphene hybrid structure in guided wave surface plasmon resonance biosensor,” Plasmonics, 2018, 13(1): 281-285.

    [13] L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, et.al., “Sensitivity enhancement by using few layer black phosphorus-graphene/TMDCs heterostructure structure in surface plasmon resonance biochemical sensor,” Sensors and Actuators B: Chemical, 2017, 249(13): 542-548.

    [14] L. M. Wu, Y. Jia, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, et.al., “Sensitivity improved SPR biosensor based on the MoS2/graphene-aluminium hybrid structure,” IEEE Journal of Lightwave Technology, 2017, 35(1): 82-87.

    [15] B. X. Ruan, J. Guo, L. M. Wu, J. Q. Zhu, Q. You, X. Y. Dai, et. al., “Ultrasensitive terahertz biosensors based on fano resonance of a graphene/waveguide hybrid structure,” Sensors, 2017, 17(8): 19-24.

    [16] P. Englebienne, A. Van Hoonacker, and M. Verhas, “Surface plasmon resonance: principles, methods and applications in biomedical sciences,” Journal of Spectroscopy, 2003, 17(2–3): 255–273.

    [17] M. Pumera, “Graphene in biosensing,” Materials Today, 2011, 14(7–8): 308–315.

    [18] M. B. Hossain, M. Hassan, L. F. Abdulrazak, M. M. Rana, M. M. Islam, and M. S. Rahman, “Graphene- MoS2-Au-TiO2-SiO2 hybrid SPR biosensor for formalin detection: numerical analysis and development,” Advanced Materials Letters, 2019: https://www.vbripress.com/aml/articles/details/1395.

    [19] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materias, 2007, 6(3): 183–191.

    [20] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photonics, 2010, 4(9): 611–622.

    [21] L. Wu, Y. Jia, L. Jiang, J. Guo, X. Dai, and Y. Xiang, et. al., “Sensitivity improved SPR biosensor based on the MoS2/graphene-aluminum hybrid structure,” Journal of Lightwave Technology, 2017, 35(1): 82-87.

    [22] M. B. Hossain and M. M. Rana, “DNA hybridization detection based on resonance frequency readout in graphene on Au SPR biosensor,” Journal of Sensors, 2016, 16: 6070742.

    [23] V. Ball and J. J. Ramsden, “Buffer dependence of refractive index increments of protein solutions,” Biopolymers, 1998, 46(7): 489–492.

    [24] L. Diéguez, N. Darwish, M. Mir, E. Martínez, M. Moreno, and J. Samitier, “Effect of the refractive index of buffer solutions in evanescent optical biosensors,” Sensor Letters, 2009, 7(5): 851-855.

    [25] K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis,” Optics Communications, 2017, 383: 186–190.

    [26] J. Homola and M. Piliarik, “Surface plasmon resonance (SPR) sensors: approaching their limits,” Optics Express, 2009, 17(19): 16505–16517.

    [27] J. S. del Río, L. G. Carrascosa, F. J. Blanco, M. Moreno, J. Berganzo, A. Calle, et al., “Lab-on-a-chip platforms based on highly sensitive nanophotonic Si biosensors for single nucleotide DNA testing,” Silicon Photonics II, 2007, 6477: 64771B.

    [28] M. B. Hossain, M.M. Rana, L. F. Abdulrazak, S. Mitra, and M. Rahman, “Graphene-MoS2 with TiO2- SiO2 layers based surface plasmon resonance biosensor: numerical development for formalin detection,” Biochemistry and Biophysics Reports, 2019, 18: 100639.

    [29] M. S. Rahman, M. S. Anower, M. R. Hasan, M. B. Hossain, and M. I. Haque, “Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor,” Optics Communications, 2017, 396: 36–43.

    [30] M. S. Rahman, M. S. Anower, M. K. Rahman, M. R. Hasan, M. B. Hossain, and M. I. Haque, “Modeling of highly sensitive MoS2-graphene hybrid based fiber optic SPR biosensor for sensing DNA hybridization,” Optik, 2017, 140: 989–997.

    [31] L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Optics Express, 2010, 18(14): 14395–14400.

    [32] A. Chakraborty, D. Banerjee, J. Basak, and A. Mukhopadhyay, “Absence of 185delAG and 6174delT mutations among breast cancer patients of eastern India,” Asian Pacific Journal of Cancer Prevention, 2015, 16(17): 7929–7933.

    [33] M. B. Hossain, S. Muktadhir, and M. M. Rana, “Multi-structural optical devices modeling using graphene tri-layer sheets,” Optik, 2016, 127(15): 5841–5851.

    [34] M. B. Hossain, M. S. Muktadhir, and M. M. Rana, “Modeling graphene macroscopic and microscopic conductivity in the sub-cell FDTD method,” In International Conference on Electrical & Electronic Engineering (ICEEE), Rajshahi, Bangladesh, 2015, 15838474.

    [35] M. M. Rana, M. B. Hossain, M. R. Islam, and Y. G. Guo, “Surface plasmon polariton propagation modeling for graphene parallel pair sheets using FDTD,” in 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Shanghai, China, 2015, 15953521.

    [36] M. B. Hossain and M. M. Rana, “An effective compact-FDTD wideband modeling of graphene conductivity,” in 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), 2015, Dhaka, Bangladesh, 15570584.

    Md. Biplob HOSSAIN, Md. Muztahidul ISLAM, Lway Faisal ABDULRAZAK, Md. Masud RANA, Tarik Bin Abdul AKIB, Mehedi HASSAN. Graphene-Coated Optical Fiber SPR Biosensor for BRCA1 and BRCA2 Breast Cancer Biomarker Detection: a Numerical Design-Based Analysis[J]. Photonic Sensors, 2020, 10(1): 67
    Download Citation